在线亚洲精品专区 线路一_成年女人在线线免费视频_中文有码无码人妻丝袜_欧美人人人人草久久

運(yùn)用系統(tǒng)醫(yī)學(xué)方法闡明轉(zhuǎn)錄因子NRF2作為慢性疾病的治療靶標(biāo)

發(fā)表于:2019-05-14   作者:admin   來(lái)源:本站   點(diǎn)擊量:27930

Antonio Cuadrado et al., PHARMACOLOGICAL REVIEWS, 2018

  

 
縮寫:
AD: 阿爾茨海默病;  ALS: 肌萎縮側(cè)索硬化癥;  AMPK,AMP活化蛋白激酶;  ARE: 抗氧化反應(yīng)元件;  β-TrCP: 含有E3泛素蛋白連接酶的β-轉(zhuǎn)導(dǎo)蛋白重復(fù)序列;  bZip: 堿性區(qū)域 - 亮氨酸拉鏈;  CDDO: 2-氰基-3,12-二氧代-油酸-1,9(11)- 二烯-28-酸;  CDDO-Me: CDDO-甲酯;  COPD:慢性阻塞性肺病;  CUL3,Cullin 3;  DC:樹(shù)突狀細(xì)胞;  DMF: 富馬酸二甲酯;  EAE:實(shí)驗(yàn)性自身免疫性腦脊髓炎;  ECH:具有Cap'n'collar同源性的紅系細(xì)胞衍生蛋白;  GCLC:g-谷氨酰半胱氨酸連接酶催化亞基;  GCLM:g-谷氨酰半胱氨酸連接酶調(diào)節(jié)劑亞基;  GI:胃腸道;  GSH:谷胱甘肽;  GSK-3:糖原合成酶激酶3;  HFD,高脂飲食;  HNSCC:頭頸部鱗狀細(xì)胞癌;  HO-1,血紅素加氧酶-1;  IBD:炎癥性腸病;  IκB:κ-B抑制劑;  IKK:IκB激酶;  IL:白細(xì)胞介素;  KEAP1:kelch樣ECH相關(guān)蛋白1;  LDL:低密度脂蛋白;  LPS:脂多糖;  MAF:肌肉腱膜纖維肉瘤蛋白;  MMF:富馬酸單甲酯;  MS:多發(fā)性硬化;  NASH:非酒精性脂肪性肝炎;  NF-κB:活化B細(xì)胞核因子κ-輕鏈增強(qiáng)子的p65亞基;  NQO1:NADPH:醌氧化還原酶;  NRF2:核因子(紅細(xì)胞衍生的2)樣2;  PD:帕金森病;  PI3K:磷脂酰肌醇3-激酶;  PPI:蛋白質(zhì)-蛋白質(zhì)相互作用;  PTEN:磷酸酶和張力蛋白同系物;  RA: 類風(fēng)濕性關(guān)節(jié)炎;  RBX1:RING-box蛋白1;  RNS:活性氮物種; ROS:活性氧;  SFN:蘿卜硫素; SLE:系統(tǒng)性紅斑狼瘡;  SNP:?jiǎn)魏塑账岫鄳B(tài)性;  SQSTM1:sequestosome 1;  STAT:信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子;  T2DM:2型糖尿病;  TGF:轉(zhuǎn)化生長(zhǎng)因子;  Th,T輔助子;  TNF:腫瘤壞死因子;  Treg:T調(diào)控。

 
 

運(yùn)用系統(tǒng)醫(yī)學(xué)方法闡明轉(zhuǎn)錄因子NRF2作為慢性疾病的治療靶標(biāo)


Antonio Cuadrado et al., PHARMACOLOGICAL REVIEWS, 2018

摘要

系統(tǒng)醫(yī)學(xué)是基于疾病機(jī)理,而非基于具體癥狀或器官的疾病研究方法,并以非假設(shè)驅(qū)動(dòng)的方式識(shí)別治療靶標(biāo)。本論文中,我們將系統(tǒng)醫(yī)學(xué)方法應(yīng)用于轉(zhuǎn)錄因子核因子( NRF2)的研究,通過(guò)交叉驗(yàn)證其在蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡(luò)(NRF2相互作用組)中的作用,該相互作用網(wǎng)絡(luò)在功能上與低水平應(yīng)激、慢性炎癥、代謝改變和活性氧形成有關(guān)的細(xì)胞保護(hù)相關(guān)聯(lián)。這些分子譜的多尺度網(wǎng)絡(luò)分析表明,NRF2表達(dá)和活性的改變是疾病子網(wǎng)路中的常見(jiàn)機(jī)制(NRF2病變)。該相互作用網(wǎng)絡(luò)關(guān)聯(lián)了明顯的異質(zhì)性表型,如自身免疫、呼吸、消化、心血管、代謝和神經(jīng)退行性疾病,以及癌癥。重要的是,系統(tǒng)醫(yī)學(xué)方法在計(jì)算機(jī)上匹配并證實(shí)了在臨床開(kāi)發(fā)的不同階段在體內(nèi)驗(yàn)證的NRF2調(diào)節(jié)藥物的若干應(yīng)用。從藥理學(xué)上看,這些藥物的特征多樣,有親電的富馬酸二甲酯、合成的三萜類化合物如巴多索酮甲基和蘿卜硫素、蛋白-蛋白或DNA -蛋白相互作用抑制劑,甚至有注冊(cè)的藥物如二甲雙胍和他汀類藥物,它們可以激活NRF2并且可能被重新用于指示 NRF2疾病表型群。因此,NRF2代表了經(jīng)典和系統(tǒng)醫(yī)學(xué)方法充分接受的第一類目標(biāo)之一,這些方法通過(guò)關(guān)注一組似乎具有機(jī)械聯(lián)系的疾病表型來(lái)促進(jìn)藥物開(kāi)發(fā)和藥物新用。 因此,由此產(chǎn)生的NRF2藥物組可能會(huì)迅速為這類慢性疾病提供一些令人驚訝的臨床選擇。 

Ⅰ. 引言

在上個(gè)世紀(jì),壽命幾乎翻了一番,特定老齡化疾病現(xiàn)在變得普遍。然而,大多數(shù)疾病的病理機(jī)制很難理解,治療方法也是通過(guò)糾正癥狀或危險(xiǎn)因素來(lái)治療。此外,與迄今為止只考慮一種疾病、一種藥物的線性方法相反,慢性病顯示出高度的關(guān)聯(lián)性,需要更精確的、以機(jī)制為基礎(chǔ)的疾病定義,而不是目前以器官和癥狀為基礎(chǔ)的疾病定義。在人類基因組測(cè)序和分子網(wǎng)絡(luò)的發(fā)展之后,一種新的疾病概念由此產(chǎn)生,疾病的診斷不僅是通過(guò)臨床癥狀,而且主要是通過(guò)潛在的分子特征識(shí)別(Goh et al., 2007)。不同的病理表型具有共同的分子機(jī)制,這一事實(shí)也為總結(jié)為“多種疾病,一種藥物”和藥物新用的治療新概念提供了理論基礎(chǔ)。網(wǎng)絡(luò)醫(yī)學(xué),即將網(wǎng)絡(luò)概念應(yīng)用于疾病和藥物之間的動(dòng)態(tài)聯(lián)系分析,為開(kāi)發(fā)這種新方法提供了新機(jī)會(huì)。老年人慢性病很可能的特征是衰老過(guò)程中體內(nèi)平衡的喪失或環(huán)境因素的影響,所有這些都會(huì)通過(guò)病理性形成活性氧(ROS),慢性炎癥和代謝失調(diào)導(dǎo)致低水平應(yīng)激?;诰W(wǎng)絡(luò)醫(yī)學(xué)方法,我們將在本文中提供大量證據(jù),表明核因子(erythroid-derived 2)–like 2 (NRF2)作為多種細(xì)胞保護(hù)反應(yīng)的主調(diào)控因子和特定疾病集群中的一個(gè)關(guān)鍵分子節(jié)點(diǎn),為藥物開(kāi)發(fā)和藥物新用提供了一種新的策略。

Ⅱ. 從NRF2相互作用組到NRF2疾病網(wǎng)絡(luò)

A. NRF2作為一個(gè)細(xì)胞穩(wěn)態(tài)的主要調(diào)節(jié)器

NRF2是一種堿性區(qū)域亮氨酸拉鏈(bZip)轉(zhuǎn)錄因子(圖1),在細(xì)胞核內(nèi)與小肌筋膜纖維瘤蛋白(MAF) K、G、F形成異二聚體。異二聚體識(shí)別一個(gè)稱為抗氧化應(yīng)答元件(ARE)的增強(qiáng)子序列,其存在于超過(guò)250個(gè)基因(ARE基因)的調(diào)節(jié)區(qū)域中(Ma,2013;Hayes and Dinkova-Kostova,2014)。這些基因編碼參與I期、II期和III期生物轉(zhuǎn)化反應(yīng)和抗氧化機(jī)制的合作酶網(wǎng)絡(luò),產(chǎn)生NADPH、谷胱甘肽(GSH)和硫氧還蛋白反應(yīng);脂質(zhì)和鐵的分解代謝;以及與其他轉(zhuǎn)錄因子的相互作用等(Hayes and Dinkova-Kostova, 2014)。最近,NRF2也被發(fā)現(xiàn)可調(diào)控多個(gè)蛋白酶體亞基和自噬基因的表達(dá),為其調(diào)控蛋白酶體平衡提供了額外的研究興趣(Pajares et al., 2015, 2016, 2017;de la Vega等,2016)。

 
 
圖1. NRF2作為細(xì)胞保護(hù)應(yīng)答的主要調(diào)節(jié)因子。 (A)NRF2通過(guò)其bZip結(jié)構(gòu)域與MAF家族成員異二聚體化。異二聚體與稱為ARE的增強(qiáng)子序列結(jié)合,所述增強(qiáng)子序列存在于超過(guò)250個(gè)基因(ARE基因)的調(diào)節(jié)區(qū)中。 (B)如所示,這些基因參與氧化還原代謝,炎癥和蛋白質(zhì)穩(wěn)態(tài)平衡的控制。 NFE2L2中易感性SNPs的存在,腦部尸檢中其靶基因水平的升高以及臨床前研究的陽(yáng)性數(shù)據(jù)表明,NRF2激活可能抵消蛋白質(zhì)穩(wěn)態(tài),氧化還原和炎癥控制的不平衡。 AC1: ATP檸檬酸裂解酶; ACC1: 乙酰輔酶A羧化酶1; CALCOCO2: 鈣結(jié)合和卷曲螺旋結(jié)構(gòu)域2; cGS: c-谷氨酸半胱氨酸合成酶; FAS: 脂肪酸合成酶; G6PDH: 葡萄糖-6-磷酸脫氫酶; Gpx: 谷胱甘肽過(guò)氧化物酶; Gpx8: 谷胱甘肽過(guò)氧化物酶8; GR: 谷胱甘肽還原酶; HMOX1: 血紅素加氧酶-1; IDH1: 異檸檬酸脫氫酶1; ME: 蘋果酸酶; MTHFD2: 亞甲基四氫葉酸脫氫酶2; PGD: 磷酸葡萄糖酸脫氫酶; PPAT: 磷酸核糖焦磷酸酰胺轉(zhuǎn)移酶; PSMB7: 蛋白酶體亞基b-7型; SCD1: 硬脂酰輔酶A去飽和酶; TrxR: 硫氧還蛋白還原酶; ULK1: unc-51像自噬激活激酶1。
 
NRF2在臨床上的重要意義在于它可能具有藥理學(xué)靶向性,對(duì)患者有益。調(diào)節(jié)NRF2轉(zhuǎn)錄活性的主要機(jī)制是通過(guò)E3連接酶適配器KEAP1(具有Cap'n'collar同源性(ECH)的Kelch樣紅系細(xì)胞衍生蛋白 - 相關(guān)蛋白1)來(lái)控制蛋白的穩(wěn)定(圖2)。KEAP1是同型二聚體蛋白,其將NRF2與Cullin 3和RING-box蛋白1(CUL3 / RBX1)形成的E3連接酶復(fù)合物連接。在穩(wěn)態(tài)條件下,KEAP1同二聚體的N-末端結(jié)構(gòu)域在兩個(gè)氨基酸序列上與一個(gè)分子的NRF2結(jié)合,具有低(天冬氨酸,亮氨酸和甘氨酸; DLG)和高(谷氨酸,蘇氨酸,甘氨酸和谷氨酸; ETGE)親和力,因此,通過(guò)CUL3 / RBX1(Tong等人,2007)將NRF2呈現(xiàn)為泛素化,并隨后通過(guò)蛋白酶體降解。KEAP1是一種氧化還原和親電子傳感器,在關(guān)鍵半胱氨酸修飾后失去其抑制NRF2的能力(圖2;生物標(biāo)志物作為NRF2特征并參與監(jiān)測(cè)目標(biāo))。調(diào)節(jié)NRF2穩(wěn)定性的另一種機(jī)制是由糖原合成酶激酶3(GSK-3)介導(dǎo)的磷酸化(圖2)。這種激酶磷酸化NRF2(天冬氨酸,絲氨酸,甘氨酸,異亮氨酸,絲氨酸; DSGIS)的結(jié)構(gòu)域,因此為含有E3泛素蛋白連接酶(b-TrCP)的E3連接酶接頭b-轉(zhuǎn)導(dǎo)蛋白重復(fù)序列產(chǎn)生識(shí)別基序,該基序?qū)RF2呈遞給 CUL1 / RBX1復(fù)合物,導(dǎo)致NRF2泛素依賴性蛋白酶體降解的替代途徑。因此,KEAP1和GSK-3 / b-TrCP分別在氧化還原穩(wěn)態(tài)和細(xì)胞信號(hào)傳導(dǎo)的情況下嚴(yán)格控制NRF2蛋白水平(Cuadrado,2015)。已經(jīng)報(bào)道了NRF2在蛋白質(zhì),mRNA或基因水平上調(diào)節(jié)的其他機(jī)制(Hayes and Dinkova-Kostova,2014),但至少這兩種機(jī)制適合于藥理學(xué)調(diào)節(jié)。
 
 
 
圖2. KEAP1和β-TrCP對(duì)NRF2穩(wěn)定性的調(diào)節(jié)及其藥理學(xué)靶向。(A)根據(jù)雙重調(diào)節(jié)模型(Rada等,2011),NRF2的兩個(gè)結(jié)構(gòu)域,稱為Neh2和Neh6,參與NRF2降解分別響應(yīng)氧化還原和親電子變化(KEAP1)和信號(hào)激酶(β-TrCP)。Neh2結(jié)構(gòu)域結(jié)合E3連接酶適配子KEAP1,其呈遞NRF2用于泛素化至CUL3 / RBX1復(fù)合物。 Neh6結(jié)構(gòu)域需要GSK-3的先前磷酸化以結(jié)合E3連接酶適配子β-TrCP并隨后通過(guò)CUL1/ RBX1復(fù)合物進(jìn)行泛素化(詳見(jiàn)文本)。(B)NRF2和KEAP1之間結(jié)合的細(xì)節(jié)以及當(dāng)前針對(duì)這種相互作用的策略。KEAP1同型二聚體在Neh2結(jié)構(gòu)域的兩個(gè)基序處結(jié)合NRF2:低親和力(29-DLG-31)和高親和力(79-ETGE-82)結(jié)合位點(diǎn)。目前破壞這種相互作用的策略包括:改變半胱氨酸C151,273和288的巰基的親電試劑; 改變NRF2與KEAP1的DC結(jié)構(gòu)域的對(duì)接的PPI抑制劑。(C)NRF2和β-TrCP的假設(shè)結(jié)合,并提出了針對(duì)這種相互作用的策略。當(dāng)它被GSK-3(Rada等,2011,2012)磷酸化時(shí),β-TrCP同型二聚體在磷酸基序334-DSGIS-338處與Nhe6結(jié)構(gòu)域結(jié)合,當(dāng)與磷酸基序373-DSAPGS-378結(jié)合時(shí)獨(dú)立于GSK-3(Chowdhry等,2013)。在該圖中,我們假設(shè),與KEAP1類似,一個(gè)β-TrCP同二聚體在兩個(gè)磷酸基序上與一個(gè)NRF2分子相互作用,但仍缺乏實(shí)驗(yàn)證據(jù)。破壞這種相互作用的兩種可能策略包括使用GSK-3抑制劑和PPI抑制劑。

B. NRF2及其調(diào)控途徑在人類相互作用組和疾病組的定位

編碼NRF2的基因,稱為NFE2L2,具有高度多態(tài)性,誘變頻率為每72 bp 1次。關(guān)于該主題的優(yōu)秀綜述在2015年報(bào)告了多達(dá)18個(gè)單核苷酸多態(tài)性(SNPs),其中大多數(shù)在5’調(diào)控區(qū)域和內(nèi)含子1中(Cho等人,2015)。這些SNPs中的一些可能構(gòu)成與慢性疾病發(fā)作或進(jìn)展風(fēng)險(xiǎn)相關(guān)的功能性單倍型。功能性單倍型的變異可能對(duì)表現(xiàn)出特定疾病的臨床癥狀的個(gè)體的比例具有微妙的影響,但是它們可能在群體水平上具有深遠(yuǎn)的影響,并且可能定義在精準(zhǔn)醫(yī)療中靶向該基因的具體策略。
網(wǎng)絡(luò)醫(yī)學(xué)的最新進(jìn)展提供了定量工具來(lái)表征基因與其相互作用(相互作用組)之間的相互作用如何與病理學(xué)相關(guān)(Barabasi等,2011; Vidal等,2011; Guney等,2016),分子網(wǎng)絡(luò)失調(diào)在各種疾病中如何普遍(Menche等,2015),以及疾病如何在特定組織中表現(xiàn)(Kitsak等,2016)。為了從系統(tǒng)醫(yī)學(xué)的角度理解NRF2在病理學(xué)中的相關(guān)性,首先我們已經(jīng)生成了人類相互作用組圖。我們整合并策劃了與NRF2調(diào)節(jié)途徑相關(guān)的蛋白質(zhì)之間的物理相互作用的信息(Hayes and Dinkova-Kostova,2014; Cuadrado,2015)。交互數(shù)據(jù)來(lái)自最近發(fā)表的人類相互作用組,其匯編了幾種蛋白質(zhì) - 蛋白質(zhì)相互作用(PPI)資源的數(shù)據(jù)(Turei等,2013; Menche等,2015)。然而,目前可用于NRF2相互作用組開(kāi)發(fā)的信息受限于以下事實(shí):因?yàn)镹RF2是非常短的半衰期蛋白質(zhì),所以可能未檢測(cè)到一些有意義的相互作用。然而,在相互作用組中發(fā)現(xiàn)了一些與NRF2物理性相互作用的眾所周知的蛋白質(zhì),包括KEAP1,b-TrCP和MAF。另一組NRF2相互作用蛋白對(duì)應(yīng)于具有調(diào)節(jié)基因表達(dá)功能的核蛋白。這些包括與bZip轉(zhuǎn)錄因子,核受體或共激活因子相關(guān)的蛋白質(zhì),或涉及組蛋白乙?;牡鞍踪|(zhì)。因此,NRF2相互作用組證明除了與該轉(zhuǎn)錄因子直接相關(guān)的基因調(diào)控之外的其他基因調(diào)控機(jī)制。NRF2在幾個(gè)殘基處被磷酸化,因此預(yù)期它與幾種激酶相互作用,所述激酶包括GSK-3和幾種蛋白激酶C同種型。這些激酶是一些膜受體和銜接子/支架蛋白的下游。除了這種物理相互作用,我們已經(jīng)確定了NRF2鄰域中富集的幾種生物功能,包括代謝過(guò)程,如戊糖,四吡咯,血紅素,葡萄糖6-磷酸,半胱氨酸,GSH,甘油醛-3-磷酸和NADPH的生物合成。大多數(shù)這些調(diào)節(jié)蛋白不直接相互作用,而是通過(guò)作為介質(zhì)的蛋白質(zhì)連接(圖3;特定相互作用分子的更詳細(xì)描述可在這個(gè)網(wǎng)址找到http://sbi.imim.es/data/nrf2/)。
 
 
圖3. 在人類相互作用組中定位NRF2調(diào)節(jié)途徑。NRF2通過(guò)協(xié)調(diào)各種蛋白質(zhì)的活性在病理性ROS形成以及炎癥和代謝反應(yīng)中起關(guān)鍵作用。這些相互作用構(gòu)成分子相互作用網(wǎng)絡(luò),即NRF2相互作用組。參與NRF2調(diào)節(jié)途徑的蛋白質(zhì)之間的已知物理相互作用(即調(diào)節(jié)蛋白:棕色圓圈)和它們連接的蛋白質(zhì)(即,介體蛋白質(zhì):綠色圓圈)用灰色連接顯示。涉及多于一種介體蛋白連接到NRF2的調(diào)節(jié)蛋白用藍(lán)色連接顯示。調(diào)節(jié)蛋白質(zhì)來(lái)自文獻(xiàn),它們的相互作用來(lái)自各種資源,包括IntAct,MINT,BioGRID,HPRD,KEGG和PhosphoSite??稍诰€獲取人類相互作用組中與NRF2相互作用的所有蛋白質(zhì)列表,網(wǎng)址為http://sbi.imim.es/data/nrf2/。
 
已經(jīng)報(bào)道了幾種疾病中NRF2相互作用組的擾動(dòng)。我們基于DisGeNET (Pinero et al., 2017)和GeneCards (Stelzer et al., 2016)數(shù)據(jù)庫(kù),結(jié)合部分動(dòng)物模型研究的知識(shí),整理了37種nrf2相關(guān)疾病的列表,繪制了疾病組圖。我們還使用DisGeNET,OMIM和GWAS數(shù)據(jù)庫(kù)檢索了這些病癥的疾病 - 基因關(guān)聯(lián)(Menche等,2015)(表1)。NRF2與每種NRF2相關(guān)疾病表型的已知疾病基因的基于相互作用組的接近度(Guney和Oliva,2014)顯示在圖4中。與隨機(jī)選擇的蛋白質(zhì)相比,NRF2與消化系統(tǒng)和癌癥(如前列腺,肝臟和肺腫瘤)的已知疾病基因顯著接近,突出了NRF2在這些病理中的關(guān)鍵功能作用。此外,發(fā)現(xiàn)NRF2與代謝和心血管疾病相關(guān)的各種蛋白質(zhì)均有近端表達(dá),例如糖尿病,高血糖癥,局部缺血,大腦中動(dòng)脈梗塞和動(dòng)脈粥樣硬化。NRF2的蛋白質(zhì)相互作用還將其與呼吸系統(tǒng)疾病相關(guān)的基因(如哮喘,肺纖維化和肺氣腫)以及神經(jīng)退行性疾?。ㄈ绨柎暮D。ˋD),帕金森?。≒D)和肌萎縮側(cè)索硬化癥(ALS))聯(lián)系起來(lái)。

表1.有NRF2相關(guān)證據(jù)的疾病群集

從DisGeNet數(shù)據(jù)庫(kù)中選擇具有與NRF2遺傳相關(guān)的證據(jù)的疾病表型。DisGeNet整合來(lái)自各種資源的疾病基因關(guān)聯(lián)信息,如UniProt,ClinVar,GWAS目錄和比較毒物基因組學(xué)數(shù)據(jù)庫(kù),并根據(jù)資源數(shù)量和支持這些關(guān)聯(lián)的出版物評(píng)估疾病基因關(guān)聯(lián)。該清單的制定基于以下標(biāo)準(zhǔn):1)僅選擇在Pubmed中具有多于一個(gè)引用的病理表型; 2)可靠性評(píng)分設(shè)定為0.001的閾值; 3)具有非常相似的名稱或重疊術(shù)語(yǔ)的疾病條目被簡(jiǎn)化為單個(gè)條目。



病理表型 可靠性分?jǐn)?shù) 病理表型 可靠性分?jǐn)?shù)
糖尿病腎病 0.2016 糖尿病性心肌病 0.0803
肝硬化 0.2005 大腦中動(dòng)脈梗塞 0.0800
非酒精性脂肪性肝炎 0.2005 乳腺腫瘤 0.0087
急性腎損傷 0.2000 白癜風(fēng) 0.0076
肺纖維化 0.2000 動(dòng)脈粥樣硬化 0.0067
非小細(xì)胞肺癌 0.1252 哮喘 0.0043
鱗狀細(xì)胞癌 0.1243 白血病 0.0038
肝腫瘤 0.1238 結(jié)腸腫瘤 0.0038
高血糖 0.1208 胃腸疾病 0.0029
藥物性肝損傷 0.1200 帕金森綜合癥 0.0026
前列腺腫瘤 0.1200 系統(tǒng)性紅斑狼瘡性腎炎 0.0026
慢性阻塞性肺疾病 0.0899 膠質(zhì)瘤 0.0024
結(jié)直腸腫瘤 0.0847 肌萎縮側(cè)索硬化癥 0.0022
阿爾茨海默病 0.0837 缺血 0.0016
2型糖尿病 0.0814 肺氣腫 0.0013
慢性腎病 0.0808 胰腺腫瘤 0.0013
糖尿病性視網(wǎng)膜病變 0.0805 血管疾病 0.0013
亨廷頓氏病 0.0805 膿血癥 0.0013
 
 
 
 
圖4. 從人類相互作用組的角度看NRF2的系統(tǒng)醫(yī)學(xué)觀點(diǎn)。疾病是由擾亂蛋白質(zhì)及其相互作用的突變引發(fā)的,影響NRF2相互作用組中的某個(gè)鄰域?;谙嗷プ饔媒M的接近度(proximity)測(cè)量基因與那些疾病鄰域的距離。 條形圖顯示NRF2基因(NFE2L2)與參與NRF2相關(guān)病理表型的已知疾病基因的接近程度。這些條形圖強(qiáng)調(diào)了NRF2在消化系統(tǒng)疾病和癌癥中的作用。對(duì)于給定的疾病,接近度首先計(jì)算從NRF2到最接近的已知疾病基因的距離,然后將該距離與使用相互作用組中隨機(jī)選擇的蛋白質(zhì)之間的平均距離估計(jì)的隨機(jī)期望進(jìn)行比較。基于相互作用組的接近度報(bào)告的z分?jǐn)?shù)對(duì)應(yīng)于NRF2與疾病基因之間觀察到的距離的顯著性。負(fù)值表示觀察到的距離低于偶然預(yù)期的距離。根據(jù)z得分,條紋以不同的橙色調(diào)著色:分別為近端(深橙色),近端(橙色),非近端(淺橙色)。已知的疾病基因來(lái)自DisGeNet,OMIM和GWAS目錄。
 
因此,基于相互作用組的接近度提供了關(guān)于NRF2如何與各種病理狀況相關(guān)聯(lián)的觀點(diǎn)。之前已將疾病之間的關(guān)系概括為一種網(wǎng)絡(luò),成為疾病組,其基于遺傳(Goh等人,2007)和臨床(Hidalgo等人,2009; Zhou等人,2014)的共同性來(lái)連接它們。在圖5中,我們基于共享基因,癥狀相似性和合并癥定義了疾病網(wǎng)絡(luò),即NRF2疾病組。NRF2似乎連接基本上由炎癥過(guò)程控制的疾病,例如急性腎損傷,肝硬化和動(dòng)脈粥樣硬化。此外,AD,PD,亨廷頓舞蹈病和ALS等神經(jīng)退行性疾病構(gòu)成一個(gè)集群,與最近的研究一致,也暗示NRF2在神經(jīng)炎癥過(guò)程中的作用(Rojo等,2010; Lastres-Becker等,2012,2014; Jung等,2017; Wang等,2017b)。通過(guò)激酶信號(hào)轉(zhuǎn)導(dǎo)級(jí)聯(lián)對(duì)NRF2的調(diào)控(Jung et al., 2017)可以解釋密切相關(guān)的癌癥簇,特別是支持NRF2參與結(jié)腸和乳腺腫瘤病理性ROS形成(Gonzalez-Donquiles et al., 2017;Lu et al., 2017)。
 
 
 
 
圖5.  NRF2疾病組的當(dāng)前狀態(tài)。疾病之間的關(guān)系表示為一個(gè)網(wǎng)絡(luò),其中病理表型由共同的遺傳和臨床描述符連接。圖中,節(jié)點(diǎn)(紅色六角形)代表疾病,邊緣根據(jù)共同的基因、共同的癥狀和共病(分別為灰色、橙色和藍(lán)色線條)表示疾病之間的相似性。與疾病相關(guān)的基因和癥狀被用來(lái)識(shí)別具有顯著遺傳和癥狀重疊的疾病對(duì),這些重疊是使用Jaccard指數(shù)計(jì)算出來(lái)的。在顯著的疾病 - 疾病關(guān)系中(P <0.05,通過(guò)基于觀察到的基因或癥狀重疊的Fisher精確檢驗(yàn)評(píng)估),僅顯示具有升高的重疊和共病的鏈接以消除潛在的虛假連接。因此,圖中包含了至少10%的疾病相關(guān)基因和超過(guò)一半的相關(guān)癥狀。共病信息是從醫(yī)療保險(xiǎn)索賠中提取的,代表人群中容易同時(shí)發(fā)生的疾病對(duì)(相對(duì)風(fēng)險(xiǎn)>2)。

Ⅲ. NRF2在人類疾病狀態(tài)中的靶標(biāo)驗(yàn)證

A. NRF2在炎癥消退中的關(guān)鍵作用

持續(xù)性炎癥是NRF2疾病組中發(fā)現(xiàn)的所有病理表型的標(biāo)志。這很可能是因?yàn)檠装Y與活性氧(ROS)的局部和全身病理形成增加有關(guān)。事實(shí)上,ROS和活性氮物種(RNS)刺激和加重炎癥反應(yīng),這些反應(yīng)與轉(zhuǎn)錄因子NF-κB的激活機(jī)制相關(guān)的激活機(jī)制相關(guān)(NF-κB:激活的B細(xì)胞的核因子κ-輕鏈增強(qiáng)子的p65亞基)(Wenzel等,2017)。非常簡(jiǎn)化的,在靜息免疫細(xì)胞中,NF-κB通過(guò)與核κ-B抑制因子(IκBα)的相互作用保留在細(xì)胞溶質(zhì)中。源自微生物的病原體相關(guān)分子模式分子以及響應(yīng)于組織損傷而釋放的損傷相關(guān)分子模式分子刺激免疫細(xì)胞表達(dá)的同源受體,其導(dǎo)致IκB激酶(IKK)β的激活。該激酶使IκBα磷酸化,使其靶向降解并允許核轉(zhuǎn)位和NF-κB活化(Napetschnig和Wu,2013)。這些事件通過(guò)IκBα的幾種調(diào)節(jié)模式進(jìn)行氧化還原控制(Bowie和O'Neill,2000; Morgan和Liu,2011; Siomek,2012),但最近描述的一種模式涉及KEAP1對(duì)IKKβ穩(wěn)定性的調(diào)節(jié)。就像NRF2一樣,IKKβ具有ETGE基序,使其能夠與KEAP結(jié)合,進(jìn)行泛素化和蛋白酶體降解。因此,在基礎(chǔ)氧化還原條件下,活性KEAP1靶向IKKβ進(jìn)行降解,然后IκBα抑制NF-κB。相反,在存在ROS的情況下,KEAP1被抑制并且IKKβ穩(wěn)定,磷酸化IκBα并導(dǎo)致其降解并因此導(dǎo)致NF-κB的上調(diào)(Lee等人,2009)。

由于NRF2是氧化還原穩(wěn)態(tài)的主要調(diào)節(jié)因子,因此它對(duì)NF-κB活性進(jìn)行間接控制。脂多糖(LPS)同時(shí)激活快速、促炎性的NF-κB反應(yīng)和緩慢的NRF2反應(yīng)。當(dāng)NRF2最大活性時(shí),NF-κB響應(yīng)隨后被抑制(Cuadrado等,2014)。例如,Ras相關(guān)的C3肉毒桿菌毒素底物1(Rho家族的一個(gè)小G蛋白)激活NF-kB途徑,并且NRF2過(guò)表達(dá)被阻斷,而NRF2敲低增強(qiáng)NF-κB依賴性轉(zhuǎn)錄(Cuadrado等,2014)。一致地,在用LPS或腫瘤壞死因子(TNF)-α攻擊的NRF2缺陷型(Nrf2-/-)小鼠中,IKK的活性惡化并導(dǎo)致IκB的磷酸化和降解增加(Thimmulappa等,2006a)。

NRF2還誘導(dǎo)抗炎表型,其調(diào)節(jié)CD8+T細(xì)胞(Sha等人,2015)以及巨噬細(xì)胞和小膠質(zhì)細(xì)胞的功能(Rojo等人,2010,2014a; Brune等人,2013)。這是因?yàn)镹RF2通過(guò)調(diào)節(jié)胱氨酸/谷氨酸轉(zhuǎn)運(yùn)蛋白和GSH合成酶?-谷氨酰半胱氨酸連接酶調(diào)節(jié)器和催化亞基[?-谷氨酰半胱氨酸連接酶調(diào)節(jié)劑亞基(GCLM)和?-谷氨酰半胱氨酸連接酶催化亞基(GCLC)]來(lái)增加巨噬細(xì)胞中的半胱氨酸和GSH水平。相反,GSH耗竭使巨噬細(xì)胞對(duì)LPS激活NRF2敏感(Diotallevi等,2017)。所有這些研究都指出NRF2是一種抗炎因子,對(duì)控制炎癥反應(yīng)的強(qiáng)度和持續(xù)時(shí)間至關(guān)重要(圖6)。
 
 
 
圖6. 通過(guò)NRF2直接和間接調(diào)節(jié)炎癥。直接作用機(jī)制包括抗炎基因的轉(zhuǎn)錄誘導(dǎo)以及促炎基因的轉(zhuǎn)錄抑制。 在第二種情況下,引號(hào)表示在此功能中需要進(jìn)一步的工作來(lái)識(shí)別NRF2的bZip伙伴(如果有的話)。抵抗炎癥的間接機(jī)制涉及ROS / RNS調(diào)節(jié)和抑制免疫細(xì)胞的遷移/浸潤(rùn)??傮w而言,這些途徑導(dǎo)致抗炎反應(yīng),有助于正確解決炎癥。NFE2L2中多態(tài)性的存在與轉(zhuǎn)錄活性降低,患者中靶基因水平的改變以及來(lái)自臨床前研究的有希望的數(shù)據(jù)相關(guān),支持NRF2在炎癥消退中的相關(guān)作用。
 
通過(guò)前饋和反饋機(jī)制產(chǎn)生NRF2和NF-κB串?dāng)_(圖7)。在轉(zhuǎn)錄水平,由于NFE2L2基因的啟動(dòng)子區(qū)域中存在幾個(gè)功能性結(jié)合位點(diǎn),NF-κB激活NRF2表達(dá),從而誘導(dǎo)負(fù)反饋環(huán)(Rushworth等,2012)。此外,NF-κB和NRF2轉(zhuǎn)錄因子都需要共激活因子CBP / p300,它是組蛋白乙酰轉(zhuǎn)移酶,乙?;⒃黾覦NA結(jié)合能力。因此,NF-κB過(guò)表達(dá)阻礙了NRF2的CBP / p300的可用性,因此降低了其轉(zhuǎn)錄能力,而NF-kB敲低顯示出相反的效果(Liu等人,2008)。另外,NF-κB可以促進(jìn)組蛋白脫乙酰酶-3與MAF蛋白的相互作用,因此阻止它們與NRF2的二聚化(Liu等人,2008)。NF-κB將KEAP1結(jié)合并轉(zhuǎn)移至細(xì)胞核,從而有利于NRF2在該細(xì)胞區(qū)室中的泛素化和降解(Yu等,2011)。 E3連接酶適配子β-TrCP標(biāo)記IκBα(Winston等人,1999)和NRF2(Rada等人,2011,2012; Cuadrado,2015)用于蛋白酶體降解,因此它可以導(dǎo)致增加的NF-kB活性。
 
 


 
圖7. NF-κB和NRF2之間的串?dāng)_發(fā)生在不同的水平。(A)已在NFE2L2的啟動(dòng)子區(qū)域中鑒定出響應(yīng)元件。(B)NRF2和NF-κB轉(zhuǎn)錄因子都競(jìng)爭(zhēng)結(jié)合轉(zhuǎn)錄共激活因子CREB結(jié)合蛋白(CBP / p300)。(C)NF-κB活化激酶IKKb含有ETGE基序,其允許KEAP1結(jié)合和隨后的泛素蛋白-蛋白酶體降解。(D)據(jù)報(bào)道NF-κB結(jié)合并將KEAP1轉(zhuǎn)移至細(xì)胞核,從而促進(jìn)NRF2降解。(E)炎癥過(guò)程中產(chǎn)生的ROS激活NF-κB和NRF2; 最后,NRF2減弱ROS并因此減弱NF-κB活性。(F)不同的促炎信號(hào)激活Rho GTP酶RAC1,導(dǎo)致NF-κB和NRF2活化。 然后NRF2抑制RAC1介導(dǎo)的NF-kB活化。
NRF2的抗炎活性被認(rèn)為僅依賴于氧化還原代謝的調(diào)節(jié)或與NF-κB的串?dāng)_。然而,NRF2還可以在暴露于LPS后直接阻斷巨噬細(xì)胞中促炎基因白細(xì)胞介素(IL)-6和IL-1β的轉(zhuǎn)錄(Kobayashi等,2016)。LPS暴露或NRF2的藥理學(xué)活化導(dǎo)致其與這些促炎基因的近端啟動(dòng)子結(jié)合并阻斷RNA pol II的募集。該機(jī)制似乎與NRF2與其成熟的ARE增強(qiáng)子的結(jié)合無(wú)關(guān)。在其他研究中,NRF2可以直接調(diào)節(jié)其他幾種巨噬細(xì)胞特異性基因的表達(dá),例如具有膠原結(jié)構(gòu)的巨噬細(xì)胞受體,細(xì)菌吞噬作用所需的受體,或CD36,氧化低密度脂蛋白的清道夫受體(Harvey等,2011;Ishii和Mann,2014)。類似地,編碼促炎細(xì)胞因子IL-17D的基因含有AREs,并且該NRF2-T輔助因子(Th)17軸似乎賦予針對(duì)腫瘤發(fā)生和病毒感染的保護(hù)作用(Saddawi-Konefka等,2016)。
慢性炎癥過(guò)程涉及白細(xì)胞粘附到血管內(nèi)皮并滲入受損組織。兩種過(guò)程似乎都被NRF2與其編碼血紅素加氧酶-1(HO-1)的至少一種靶基因HMOX1一起調(diào)節(jié)。NRF2 / HO-1軸通過(guò)調(diào)節(jié)幾種細(xì)胞粘附分子如血管細(xì)胞粘附分子1的表達(dá)來(lái)抑制炎性細(xì)胞與內(nèi)皮的粘附(Banning和Brigelius-Flohe,2005; Wenzel等,2015)。另外,NRF2 / HO-1抑制巨噬細(xì)胞中的金屬蛋白酶-9,這是組織內(nèi)免疫細(xì)胞遷移所必需的(Bourdonnay等,2009)。
許多臨床前研究報(bào)道,天然化合物(Satoh等,2013)或通過(guò)破壞其負(fù)調(diào)節(jié)因子KEAP1激活NRF2導(dǎo)致髓樣白細(xì)胞(Kong等,2011)和巨噬細(xì)胞(Lin等, 2008)的強(qiáng)效抗炎作用。 在觀察性研究中,NFE2L2中的多態(tài)性與轉(zhuǎn)錄活性降低相關(guān),與炎癥性腸?。ˋrisawa等,2008b)和慢性胃炎(Arisawa等,2007)的風(fēng)險(xiǎn)增加相關(guān)。NRF2的免疫調(diào)節(jié)作用的一個(gè)例子是在中樞神經(jīng)系統(tǒng)。受損神經(jīng)元釋放出趨化因子,一種特異性激活小膠質(zhì)細(xì)胞中磷脂酰肌醇3激酶/ AKT(PI3K / AKT)途徑的趨化因子,導(dǎo)致GSK-3β的抑制和NRF2的上調(diào)(LastresBecker等,2014)。在這項(xiàng)研究中,來(lái)自AD和進(jìn)行性核上性麻痹患者的尸檢顯示出趨化因子水平的補(bǔ)償性增加以及上調(diào)的NRF2蛋白,表明該途徑有助于限制病變大腦中的炎癥反應(yīng)。

B. NRF2在自身免疫性疾病中的作用

在NRF2疾病群的外圍,我們發(fā)現(xiàn)了幾種自身免疫疾病表型,如白癜風(fēng),哮喘,多發(fā)性硬化癥(MS)和系統(tǒng)性紅斑狼瘡(SLE)。實(shí)際上,在實(shí)驗(yàn)性自身免疫性腦脊髓炎(EAE)和類風(fēng)濕性關(guān)節(jié)炎(RA)的動(dòng)物模型中的大量工作,以及MS和牛皮癬中的臨床證據(jù)進(jìn)一步指出NRF2在自身免疫疾病中的作用。氧化組織損傷和細(xì)胞凋亡可以增加自身抗原的產(chǎn)生,導(dǎo)致T細(xì)胞的活化和B細(xì)胞產(chǎn)生自身抗體,例如,如對(duì)3-硝基酪氨酸陽(yáng)性蛋白所觀察到的那樣(Thomson等,2012)。此外,II相解毒酶的丟失,其中許多由NRF2轉(zhuǎn)錄調(diào)節(jié),導(dǎo)致活性中間體的產(chǎn)生增加,這有助于形成半抗原或受損的大分子,有時(shí)變得具有免疫原性,從而增加引發(fā)自身免疫反應(yīng)的自身抗原庫(kù)。因?yàn)镹RF2調(diào)節(jié)的酶在許多化學(xué)物質(zhì)的解毒中起關(guān)鍵作用,因此可以認(rèn)為NRF2可能是一種保護(hù)機(jī)制,可以抵抗環(huán)境對(duì)自身免疫發(fā)病機(jī)制的作用(Ma, 2013)。NRF2介導(dǎo)的自身免疫調(diào)節(jié)的潛在機(jī)制還涉及抑制促炎性Th1和Th17應(yīng)答以及免疫抑制性T調(diào)節(jié)(Treg)和Th2應(yīng)激的激活。還有越來(lái)越多的證據(jù)表明NRF2可以控制參與抗原呈遞和適應(yīng)性免疫應(yīng)答調(diào)節(jié)的樹(shù)突細(xì)胞(DC)和巨噬細(xì)胞的分化和功能。事實(shí)上,NRF2缺陷表明,通過(guò)增加共刺激分子的表達(dá)并因此增加抗原特異性T細(xì)胞反應(yīng)性來(lái)改變DCs的功能和表型(Al-Huseini等,2013)。
MS是一種慢性炎性疾病,其特征在于自身反應(yīng)性免疫細(xì)胞浸潤(rùn)到中樞神經(jīng)系統(tǒng)中。NRF2的缺失加劇了EAE的發(fā)展,EAE是MS的小鼠模型(Johnson等人,2010)。與NRF2缺乏相關(guān)的部分影響可能與HO-1水平降低有關(guān)。因此,具有骨髓特異性HO-1缺陷的小鼠表現(xiàn)出較高的病變發(fā)生率,伴隨著抗原呈遞細(xì)胞的活化和炎性Th17和髓鞘特異性T細(xì)胞的浸潤(rùn)(Tzima等人,2009)。敲除KEAP1(Kobayashi等,2016)或用各種激活NRF2的小分子治療(Buendia等,2016)抑制了疾病的發(fā)展和嚴(yán)重程度。NRF2在活躍的MS病變中強(qiáng)烈上調(diào),并且NRF2應(yīng)答基因的表達(dá)主要在初始髓鞘破壞的區(qū)域中被發(fā)現(xiàn)(Licht-Mayer等,2015)。在MS腦中,NRF2及其靶標(biāo)NADPH:醌氧化還原酶(NQO1)和HO-1主要在浸潤(rùn)性巨噬細(xì)胞中表達(dá),在較小程度上在星形膠質(zhì)細(xì)胞中表達(dá),最有可能作為對(duì)病理性ROS形成的代償性反應(yīng)。相反,在少突膠質(zhì)細(xì)胞中缺乏NRF2和抗氧化基因表達(dá),這可能是它們?cè)贛S中的損傷和損失的基礎(chǔ)(van Horssen等,2010)。由于免疫和氧化還原穩(wěn)態(tài)的改變,MS患者外周血單核細(xì)胞中HO-1表達(dá)降低,并且在疾病惡化期間下調(diào)(Fagone等,2013)。值得注意的是,干擾素-β治療患者的基因表達(dá)譜分析鑒定出NRF2是長(zhǎng)期抗氧化反應(yīng)和神經(jīng)元保存的潛在介質(zhì)(Croze等,2013)。
SLE由高氧化環(huán)境、失調(diào)的細(xì)胞死亡和去除死細(xì)胞的缺陷而突出,這導(dǎo)致細(xì)胞壞死作為自身抗原的來(lái)源。NRF2缺陷的雌性小鼠隨年齡增長(zhǎng)而發(fā)展為類似于SLE的多器官自身免疫性疾病,其特征為DNA氧化增加,脂質(zhì)過(guò)氧化,脾細(xì)胞凋亡,抗雙鏈DNA抗體和史密斯抗原的存在,以及伴隨重要的組織損傷(血管炎,腎小球腎炎,肝炎和心肌炎)(Li等,2004)。只有雌性小鼠出現(xiàn)SLE進(jìn)展的事實(shí)表明,雌性特異性因子可能有助于打破對(duì)自身抗原的免疫耐受(Li等,2004)。NRF2缺乏還導(dǎo)致CD4 + T細(xì)胞的增殖反應(yīng)增強(qiáng)、CD4 + / CD8 +比率改變、以及SLE中促炎性Th17的促進(jìn)(Ma等人,2006; Zhao等人,2016)。事實(shí)上,NRF2耗竭與狼瘡性腎炎發(fā)展過(guò)程中的Th17分化和功能有關(guān),這似乎是通過(guò)調(diào)節(jié)細(xì)胞因子信號(hào)傳導(dǎo)抑制因子3 /磷酸化信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子(STAT)3途徑和IL-1b信號(hào)來(lái)調(diào)節(jié)的(Zhao 等,2016)。此外,Nrf2-/ -小鼠的唾液腺顯示出強(qiáng)烈的淋巴細(xì)胞浸潤(rùn),使人想起Sjögren綜合征,這通常與SLE有關(guān)(Ma等,2006)。SLE患者表現(xiàn)出氧化性DNA損傷修復(fù)機(jī)制的改變(Evans等,2000),高血清氧化蛋白水平,載脂蛋白C3(Morgan等,2007),氧化磷脂和抗氧化修飾脂蛋白的自身抗體(Frostegard等,2005)。NRF2多態(tài)性尚未與SLE易感性相關(guān),盡管SNP rs35652124與墨西哥女性兒童期發(fā)病腎炎風(fēng)險(xiǎn)增加有關(guān)(Cordova等,2010)。
類風(fēng)濕關(guān)節(jié)炎(RA)是一種全身炎癥性疾病,具有復(fù)雜但仍難以捉摸的自身免疫特性,在炎癥關(guān)節(jié)中,中性粒細(xì)胞、巨噬細(xì)胞和淋巴細(xì)胞被積極募集和激活。這導(dǎo)致促炎介質(zhì)如ROS / RNS,類二十烷酸,細(xì)胞因子(IL-17,TNF-α,干擾素-?,IL-6和IL-1β)和分解代謝酶的分泌增加,這些促炎介質(zhì)引發(fā)滑膜成纖維細(xì)胞的過(guò)度增殖, 關(guān)節(jié)腫脹,軟骨和骨的逐漸破壞(Roberts等,2015)。NRF2基因的缺失增加了實(shí)驗(yàn)性RA模型中關(guān)節(jié)改變的易感性。例如,在表達(dá)T細(xì)胞受體KRN和主要組織相容性復(fù)合體II類分子A(g7) (K/BN關(guān)節(jié)炎模型)的小鼠中,以及在抗體誘導(dǎo)的關(guān)節(jié)炎中,NRF2缺乏加速了發(fā)病率并加重了疾病進(jìn)程( Maicas等,2011; Wu等,2016b)。NRF2缺乏顯著上調(diào)炎癥細(xì)胞的遷移、環(huán)加氧酶-2和誘導(dǎo)型一氧化氮合酶的表達(dá)、ROS和RNS的產(chǎn)生以及促炎細(xì)胞因子和趨化因子的釋放。此外,NRF2可能是關(guān)節(jié)炎中骨代謝的保護(hù)因子(Maicas等,2011),NRF2 / HO-1活化在RA動(dòng)物模型和人滑膜成纖維細(xì)胞中發(fā)揮抗炎和抗氧化作用(Wu等,2016b)。有趣的是,抗風(fēng)濕金(I)化合物通過(guò)激活NRF2和上調(diào)HO-1和GCLC來(lái)刺激抗氧化反應(yīng),證明其對(duì)RA的臨床療效(Kobayashi 等, 2016)。此外,NRF2 / HO-1激活介導(dǎo)了滑膜細(xì)胞凋亡的誘導(dǎo)和西洛他唑?qū)Υ傺准?xì)胞因子產(chǎn)生的抑制(Park等,2010)以及H2S和相關(guān)化合物的抗炎作用,它們能通過(guò)對(duì)KEAP1的半胱氨酸殘基進(jìn)行硫化物修飾(Wu等,2016b)。其他誘導(dǎo)NRF2和HO-1信號(hào)傳導(dǎo)的藥物,如瑞巴派特,可以轉(zhuǎn)導(dǎo)人和小鼠CD4+ T細(xì)胞向免疫抑制性Treg表型的分化,并通過(guò)特異性抑制STAT3來(lái)抑制TCD4+細(xì)胞向炎性Th17細(xì)胞的分化(Moon等,2014)。發(fā)炎的滑膜內(nèi)過(guò)量的ROS產(chǎn)生似乎有助于RA的發(fā)病機(jī)制,因?yàn)榛颊叩腞OS形成,脂質(zhì)過(guò)氧化,蛋白質(zhì)氧化,DNA損傷和抗氧化防御機(jī)制活性降低顯著增加,所有這些都促成了組織損傷和疾病進(jìn)展(Datta等,2014)。響應(yīng)于病理性ROS的形成,NRF2途徑在RA患者的滑膜細(xì)胞和抗體誘導(dǎo)的關(guān)節(jié)炎小鼠的關(guān)節(jié)中被激活,但是該反應(yīng)顯然不足以抵消疾病進(jìn)展(Wu等,2016b)。
白癜風(fēng)是一種皮膚炎癥性疾病,其特征在于表皮中ROS的積累,其參與黑素細(xì)胞的死亡。這些分子修飾DNA和黑素體蛋白,形成自身抗原并激活針對(duì)黑素細(xì)胞的自身免疫應(yīng)答(Xie等,2016)。 遺傳學(xué)研究發(fā)現(xiàn)NRF2啟動(dòng)子SNPs與白癜風(fēng)易感性有關(guān),如-650位點(diǎn)的SNP (Guan等, 2008),而rs35652124的C等位基因在漢族人群中被證明具有保護(hù)作用(Song等, 2016)。NRF2及其下游解毒靶基因NQO1,GCLC和GCLM在白癜風(fēng)患者的表皮中上調(diào),表明這種防御機(jī)制的激活不足(Natarajan等,2010)。

C. NRF2在慢性呼吸系統(tǒng)疾病中的作用

NRF2在呼吸系統(tǒng)疾病中的相關(guān)性在2010年得到了回顧(Cho和Kleeberger,2010),在這項(xiàng)工作中,我們將僅重點(diǎn)介紹最相關(guān)的發(fā)現(xiàn)(圖8)。香煙煙霧是慢性阻塞性肺?。–OPD)的主要危險(xiǎn)因素。COPD患者具有功能失調(diào)的肺泡巨噬細(xì)胞,其導(dǎo)致不受控制的ROS產(chǎn)生,促炎介質(zhì),吞噬作用缺陷和一系列參與組織損傷的金屬蛋白酶。慢性阻塞性肺病(COPD)患者的肺泡巨噬細(xì)胞功能失調(diào),導(dǎo)致ROS生成失控、促炎介質(zhì)、有缺陷的吞噬作用以及一系列參與組織損傷的金屬蛋白酶。事實(shí)上,肺氣腫肺組織顯示實(shí)質(zhì)中肺泡巨噬細(xì)胞密度與肺破壞嚴(yán)重程度之間存在直接關(guān)系(Finkelstein等,1995)。肺泡巨噬細(xì)胞的吞噬活性受損是引起COPD急性加重的細(xì)菌和病毒復(fù)發(fā)的主要原因,并且是發(fā)病率和死亡率的主要來(lái)源。Nrf2-/- 小鼠對(duì)香煙煙霧誘發(fā)的肺氣腫表現(xiàn)出增強(qiáng)的易感性(Rangasamy等,2004)。重要的是,用異硫氰酸酯蘿卜硫素(SFN)激活NRF2可恢復(fù)對(duì)細(xì)菌的識(shí)別和吞噬作用,增強(qiáng)肺泡巨噬細(xì)胞對(duì)肺細(xì)菌的清除,并減少野生型小鼠的炎癥,但對(duì)于暴露于接觸香煙煙霧的Nrf2-/-小鼠不會(huì)發(fā)生(Harvey等,2011)。在人類中,與吸煙和非吸煙的非肺氣腫患者相比,吸煙相關(guān)性肺氣腫患者肺泡巨噬細(xì)胞中NRF2的轉(zhuǎn)錄特征降低(Goven等, 2008)。NRF2表達(dá)降低與脂質(zhì)過(guò)氧化產(chǎn)物4-羥基壬烯醛巨噬細(xì)胞表達(dá)增加有關(guān)。在NFE2L2啟動(dòng)子中,由三個(gè)SNPs和一個(gè)三聯(lián)體重復(fù)構(gòu)成的功能性單倍型,產(chǎn)生低至中等NRF2表達(dá)的多態(tài)性(Yamamoto等,2004),與發(fā)生COPD的風(fēng)險(xiǎn)增加有關(guān)(Hua等,2010)。低表達(dá)單倍型是發(fā)展呼吸衰竭的重要預(yù)測(cè)因子。因此,SNP rs6721961的-617A等位基因發(fā)生急性肺損傷的風(fēng)險(xiǎn)顯著較高(Marzec等,2007)。
病理性ROS形成可能在慢性肺纖維化的發(fā)病機(jī)制中起作用。早期研究表明,博來(lái)霉素誘導(dǎo)的肺纖維化在Nrf2-/- 中比在野生型小鼠中更嚴(yán)重(Cho等,2004)。事實(shí)上,野生型小鼠通過(guò)上調(diào)NRF2誘導(dǎo)抗氧化和抗炎反應(yīng),而這在Nrf2-/-小鼠中無(wú)法實(shí)現(xiàn)。后來(lái)證實(shí),患有特發(fā)性肺纖維化或慢性結(jié)節(jié)病/過(guò)敏性肺炎的患者表現(xiàn)出NRF2的表達(dá)增加,并且支氣管肺泡灌洗液中的低摩爾.wt.抗氧化劑水平增加,如尿酸,抗壞血酸,視黃醇和α-生育酚 ,表明對(duì)ROS挑戰(zhàn)的適應(yīng)性反應(yīng)不成功(Markart等,2009)。機(jī)制地,NRF2缺乏增加肌成纖維細(xì)胞分化,而用SFN藥理誘導(dǎo)NRF2導(dǎo)致肌成纖維細(xì)胞數(shù)量減少和轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)的促纖維化作用減弱(Artaud-Macari等人,2013)。
 
  
 
圖8. NRF2在慢性病的常見(jiàn)機(jī)制和病理表型中的作用。該圖提供了從圖5的NRF2疾病組中提取的一些實(shí)例。這些疾病的常見(jiàn)病理機(jī)制包括異常高的ROS水平和參與組織損傷的低度慢性炎癥。NRF2通過(guò)調(diào)節(jié)許多細(xì)胞保護(hù)基因的表達(dá),提供針對(duì)這些和其他組織特異性改變的細(xì)胞保護(hù)特征。

D. 消化系統(tǒng)中的NRF2

NRF2疾病組中消化系統(tǒng)病理表型的顯著地位突出了NRF2的轉(zhuǎn)錄特征作為一種對(duì)異生素引發(fā)的慢性氧化損傷和炎癥應(yīng)激的有效適應(yīng)機(jī)制的相關(guān)性。在胃腸道(GI)中,長(zhǎng)期接觸異生素可引發(fā)腸腔微生物群與免疫系統(tǒng)之間功能失調(diào)的相互作用(Aviello和Knaus,2017)。這可導(dǎo)致胃腸道的慢性疾病,如包括克羅恩病和潰瘍性結(jié)腸炎的炎性腸?。↖BD)表型,其中存在激活保護(hù)性NRF2應(yīng)答的證據(jù)。例如,在來(lái)自IBD患者的結(jié)腸組織中,結(jié)腸上皮細(xì)胞通過(guò)與蛋白酶體蛋白表達(dá)增加相關(guān)的NRF2依賴性適應(yīng)對(duì)炎癥信號(hào)起反應(yīng)(Kruse等,2016)。來(lái)自IBD患者的單核細(xì)胞衍生的巨噬細(xì)胞證明了特異性NRF2依賴性基因表達(dá)譜,其響應(yīng)于LPS而加重,進(jìn)一步表明這是一種減輕炎癥反應(yīng)的嘗試(Baillie等, 2017)。在遺傳水平上,NFE2L2基因的特定基因型(-686-684)與日本隊(duì)列研究中的潰瘍性結(jié)腸炎的發(fā)展相關(guān),尤其是在女性中(Arisawa等,2008a)。事實(shí)上,GI中的病理過(guò)程高度依賴于宿主的遺傳背景,與腸腔微生物群和免疫系統(tǒng)之間的功能失調(diào)相互作用有關(guān)(Aviello和Knaus,2017)。
GI的微生物群的共生作用之一是釋放適量的ROS,其引起由NRF2介導(dǎo)的上皮細(xì)胞和浸潤(rùn)的免疫細(xì)胞中的細(xì)胞保護(hù)反應(yīng)(Jones等,2015)。此外,在真核生物中受NRF2轉(zhuǎn)錄控制的細(xì)胞保護(hù)分子也可以由共生細(xì)菌產(chǎn)生。例如,微生物群中的HO-1同源物可能對(duì)胃腸道內(nèi)穩(wěn)態(tài)有很大的貢獻(xiàn),這可以用于治療一氧化碳在腸道的局部遞送(Onyiah等, 2014)。
NRF2在維持胃腸道穩(wěn)態(tài)方面的作用已被證實(shí),使NRF2這一轉(zhuǎn)錄因子成為IBD中有希望的治療靶點(diǎn)。因此,幾種化合物和膳食補(bǔ)充劑可能表現(xiàn)出有益效果,如褪黑激素,3-(3-吡啶基亞甲基)-2-吲哚滿酮,丁酸鹽,干酪乳桿菌,左旋肉堿,4-乙烯基-2,6-二甲氧基苯酚(卡諾爾), 乳枸杞(脫脂牛奶中枸杞的配方產(chǎn)品)等(Orena等,2015)。因此,明確NRF2在消化道慢性和急性疾病中的參與情況,對(duì)于更好地指導(dǎo)NRF2通路的調(diào)節(jié)治療方法至關(guān)重要。
肝臟也是抵抗食物異生素的第一道防線。因此,NRF2疾病組強(qiáng)調(diào)該轉(zhuǎn)錄因子在與肝損傷相關(guān)的病理表型中的相關(guān)性也就不足為奇了。早期使用Nrf2-/-小鼠模型證明其對(duì)對(duì)乙酰氨基酚誘導(dǎo)的肝細(xì)胞損傷、苯并[a]芘誘導(dǎo)的腫瘤形成以及Fas-和TNF-α介導(dǎo)的肝細(xì)胞凋亡具有保護(hù)作用(Aleksunes和Manautou,2007)。Nrf2-/-小鼠對(duì)化學(xué)毒性的較高敏感性與解毒酶的基礎(chǔ)表達(dá)和誘導(dǎo)表達(dá)降低相關(guān)。在人類中,導(dǎo)致NRF2表達(dá)降低的三種NRF2啟動(dòng)子SNPs的功能性單倍型與胃粘膜炎癥的發(fā)展顯著相關(guān),無(wú)論是獨(dú)立地還是通過(guò)與幽門螺桿菌感染相互作用(Arisawa等,2007)。對(duì)原發(fā)性膽汁性膽管炎患者NRF2轉(zhuǎn)錄特征的分析表明,這些患者表現(xiàn)出NRF2表達(dá)降低以及HO-1和GCLC蛋白水平低,這些損傷在肝硬化患者中更為嚴(yán)重(Wasik等,2017)。
病理性ROS形成是非酒精性脂肪性肝炎(NASH)患者肝細(xì)胞損傷和疾病進(jìn)展的關(guān)鍵機(jī)制(圖8)。該疾病分兩個(gè)階段發(fā)展,一個(gè)是肝細(xì)胞中脂肪酸的逐漸積累,另一個(gè)是肝損傷和炎性病理性ROS的形成(Wang等,2018)。因此,喂食高脂肪飲食(HFD)的小鼠出現(xiàn)了單純的脂肪變性,其特征是肝臟脂肪沉積增加而沒(méi)有炎癥或纖維化,但Nrf2-/-小鼠出現(xiàn)加劇的肝臟脂肪變性和大量炎癥,與NASH一致(Reccia等,2017)。然而有趣的是,肝細(xì)胞特異性KEAP1的缺失在減少肝臟脂肪變性的同時(shí),并沒(méi)有改變NASH發(fā)展過(guò)程中的炎癥反應(yīng),提示其具有代償機(jī)制(Ramadori等, 2016)。至少在NASH的大鼠模型中,飲食NRF2激活劑減弱了肝纖維化的進(jìn)展(Shimozono等,2013)。在NASH患者的肝臟活組織檢查中病理性ROS形成的標(biāo)志物增加,并且NRF2特征增加,表明其試圖減少氧化劑和炎癥負(fù)荷(Takahashi等人,2014)。

E. 心血管系統(tǒng)中的NRF2

NRF2疾病群指出心血管系統(tǒng)對(duì)細(xì)胞氧化還原平衡的變化以及眾所周知的動(dòng)脈粥樣硬化、高血壓和糖尿病等共病的發(fā)展具有高度敏感性(Griendling and FitzGerald, 2003a,b;Harrison等,2003;Jay等,2006)(圖8)。NRF2在預(yù)防這些病理表型方面的作用已經(jīng)在NRF2 -/-小鼠中得到證實(shí),NRF2 -/-小鼠在慢性耐力運(yùn)動(dòng)中表現(xiàn)出心臟結(jié)構(gòu)受損(更多的重塑事件)和功能受損(較少縮短分?jǐn)?shù))(Shanmugam等, 2017a)。它們也更容易在心肌梗塞后發(fā)生心力衰竭(Strom和Chen,2017)。相反,NRF2的組成型活化產(chǎn)生還原狀態(tài),其特征書是心臟GSH /谷胱甘肽二硫化物比率增加和ROS形成和丙二醛水平降低(Shanmugam等,2017b)。在人類中,Tako-Tsubo心肌病的微陣列分析表明,在這種收縮功能障礙的急性期,病理性ROS水平增加,NRF2代償性上調(diào)(Nef等,2008)。最近,血液透析患者的全身性炎癥和病理性ROS形成與NRF2的下調(diào)相關(guān)(Pedruzzi等,2015),并且兩種啟動(dòng)子多態(tài)性(rs35652124和rs6721961)與這些患者的死亡風(fēng)險(xiǎn)增加相關(guān)(Shimoyama等,2014)。
NRF2在內(nèi)皮穩(wěn)態(tài)中最相關(guān)的靶點(diǎn)之一是HO-1,其通常與鐵蛋白的上調(diào)相平行,因此降低游離鐵水平,并阻止芬頓型反應(yīng)。由HO-1和膽綠素還原酶的聯(lián)合活性產(chǎn)生的膽紅素是清除ROS / RNS的最強(qiáng)大的內(nèi)源性抗氧化劑之一(Jansen等,2010),并且在體外預(yù)防脂質(zhì)過(guò)氧化方面非常有效( Stocker等,1987)。Hmox1-/-小鼠顯示出慢性缺氧引起的肺動(dòng)脈高壓升高(Christou等,2000),藥理學(xué)HO-1誘導(dǎo)可改善糖尿病并發(fā)癥(Kruger等,2006),以及硝酸甘油誘導(dǎo)的血管功能障礙( 硝酸鹽耐受性)(Wenzel等,2007)。最近,Hmox1-/-小鼠在血管緊張素II響應(yīng)中顯示NADPH氧化酶-2上調(diào)、血管病理ROS形成、炎癥標(biāo)志物、內(nèi)皮功能障礙和血壓升高(Wenzel et al., 2015)。事實(shí)上,高血清膽紅素水平與冠狀動(dòng)脈疾病的發(fā)病率呈負(fù)相關(guān)(Hopkins等,1996)。膽紅素阻止血管NADPH氧化酶的活化(Kwak等,1991),其參與心血管疾病的發(fā)展(Griendling和FitzGerald,2003a,b; Harrison等,2003; Jay等,2006)。外周動(dòng)脈疾病是動(dòng)脈粥樣硬化的常見(jiàn)表現(xiàn),患有外周動(dòng)脈疾病的患者HO-1水平降低(Signorelli等, 2016)。

F. 代謝性疾病中的NRF2

2型糖尿?。═2DM)是最常見(jiàn)的慢性代謝疾病之一,并且在NRF2疾病組中尤為突出。胰島素敏感組織以及胰腺中的病理性ROS形成已在T2DM患者中發(fā)現(xiàn),導(dǎo)致胰腺β細(xì)胞分泌胰島素和外周組織胰島素作用嚴(yán)重受損(Uruno等,2015)(圖 8)。同樣,由于蛋白質(zhì)的非酶促糖化,病理性ROS水平也有助于糖尿病并發(fā)癥的發(fā)病機(jī)理。這已在糖尿病腎病中得到證實(shí),其中腎小球表現(xiàn)出病理性ROS水平和NRF2的代償性升高(Jiang等人,2010)。自2007年以來(lái),一些研究利用動(dòng)物模型和細(xì)胞系研究了NRF2在T2DM及其并發(fā)癥中的作用。體外對(duì)人體細(xì)胞的研究表明,NRF2的激活是在急性高糖環(huán)境下實(shí)現(xiàn)的,而較長(zhǎng)時(shí)間的培育時(shí)間或振蕩的葡萄糖濃度均不能激活NRF2 (Ungvari等, 2011;Liu等, 2014)。因此,這些研究指出NRF2活化依賴于葡萄糖濃度和動(dòng)力學(xué)。相反,NRF2在前驅(qū)糖尿病和糖尿病患者的外周血單核細(xì)胞中下調(diào),表明NRF2可能是重要的治療靶點(diǎn)(Jimenez-Osorio等,2014)。
NRF2缺乏對(duì)高血糖的影響首先在Nrf2-/-小鼠中顯示,其中氧化和亞硝化改變?cè)鰪?qiáng)并導(dǎo)致早期腎損傷(Yoh等,2008)。 在隨后的研究中,鏈脲佐菌素誘導(dǎo)的糖尿病Nrf2-/-小鼠表現(xiàn)出加劇的腎小球損傷,同時(shí)ROS產(chǎn)生增加和促纖維化標(biāo)志物TGF-β和纖連蛋白表達(dá)的增加(Jiang等人,2010)。在這個(gè)糖尿病模型中,NRF2對(duì)血視網(wǎng)膜屏障功能障礙和糖尿病視網(wǎng)膜病變的進(jìn)展具有保護(hù)作用(Xu等, 2014)。同樣,HFD誘導(dǎo)的血管ROS水平的增加在Nrf2-/-小鼠中顯著加劇,并伴有嚴(yán)重的內(nèi)皮功能障礙,表現(xiàn)為乙酰膽堿誘導(dǎo)的主動(dòng)脈松弛減弱和細(xì)胞間粘附分子-1和TNF-α表達(dá)增加( Ungvari等,2011)。
NRF2在組織特異性胰島素抵抗中起復(fù)雜作用。因此,與野生型小鼠相比,HFD喂養(yǎng)的Nrf2-/-小鼠由于肝臟和骨骼肌中胰島素信號(hào)的增強(qiáng)而表現(xiàn)出更好的胰島素敏感性,但相反,這些小鼠由于與病理ROS形成相關(guān)的肝脂毒性過(guò)高而產(chǎn)生嚴(yán)重的NASH (Meakin等, 2014)。因此,該研究將肝胰島素抵抗與NASH的發(fā)展分離。根據(jù)這些數(shù)據(jù),隨后的研究表明,由于CYP2A5酶的表達(dá)減弱,HFD喂養(yǎng)的Nrf22-/-小鼠的肝臟由于GSH的顯著消耗而表現(xiàn)出更高的病理性ROS形成(Cui等人,2013)。NRF2在肝細(xì)胞中的敲低增強(qiáng)了棕櫚酸誘導(dǎo)的細(xì)胞凋亡,棕櫚酸是一種在胰島素抵抗性肥胖患者中高度升高的脂肪酸。這種效應(yīng)與病理性ROS的產(chǎn)生增加相關(guān),再次強(qiáng)化了NRF2在NASH進(jìn)展中的關(guān)鍵作用(Pilar Valdecantos等,2015)。
為了進(jìn)一步研究NRF2在代謝綜合征中的作用,我們?cè)谑菟厝狈?ob/ob)小鼠模型中去除NRF2,該模型具有極好的正能量平衡(Xue等, 2013)。有趣的是,全身ob / ob / Nrf2-/-小鼠或脂肪細(xì)胞特異性ob/ob/ Nrf2-/-小鼠顯示白色脂肪量減少,顯示NRF2是脂肪生成的關(guān)鍵參與者。這些小鼠具有更嚴(yán)重的代謝綜合征,其特征在于高脂血癥,加重的胰島素抵抗和高血糖,表明代謝綜合征與病理性ROS形成之間的機(jī)制聯(lián)系。
另一組研究評(píng)估了持續(xù)誘導(dǎo)NRF2在葡萄糖代謝中的作用。NRF2基因誘導(dǎo)利用Keap1的一個(gè)亞型等位基因(Keap1flox/- 突變體)降低肥胖糖尿病db/db小鼠的血糖,是通過(guò)抑制肝細(xì)胞中cAMP-CREB信號(hào)傳導(dǎo)以及其他糖異生基因(例如過(guò)氧化物酶體增殖激活受體輔激活因子-1α)來(lái)抑制肝葡萄糖6磷酸酶(Uruno等,2013)。此外,Keap11敲低小鼠中NRF2活性的增強(qiáng)增加了肝臟中AMP活化蛋白激酶(AMPK)的磷酸化,以及骨骼肌中的胰島素信號(hào)傳導(dǎo),導(dǎo)致葡萄糖耐量的顯著改善(Xu等,2013)。由于NRF2在T2DM背景下的多效活性,所有這些和其他研究的結(jié)果證明需要設(shè)計(jì)多種遺傳和藥理學(xué)策略來(lái)闡明參與全身葡萄糖穩(wěn)態(tài)控制的組織中的全部NRF2功能。
除了年齡,體重和血糖等糖尿病因素外,與NRF2相關(guān)的遺傳因素在人類中研究較少。在中國(guó)人群中,SNP rs6721961與病理性ROS形成和新診斷的T2DM風(fēng)險(xiǎn)有關(guān),并且還可能導(dǎo)致胰島素分泌能力受損和胰島素抵抗增加(Wang等,2015)。在墨西哥混血男性中,相同的SNP與糖尿病相關(guān)(Jimenez-Osorio等,2017)。在一項(xiàng)漢族志愿者參與的病例對(duì)照研究中,發(fā)現(xiàn)T2DM患者無(wú)論有無(wú)并發(fā)癥,包括周圍神經(jīng)病變、腎病、視網(wǎng)膜病變、足潰瘍和微血管病變,NFE2L2基因4個(gè)SNPs的基因型和等位頻率存在顯著差異(Xu等, 2016b)。

G. 神經(jīng)退行性疾病中的NRF2

NRF2疾病組提供NRF2參與幾種神經(jīng)退行性疾病的證據(jù),包括AD和PD,其代表老年人最普遍的認(rèn)知和運(yùn)動(dòng)障礙。在神經(jīng)退行性疾病中,低級(jí)病理性ROS形成與蛋白質(zhì)穩(wěn)態(tài)之間的聯(lián)系尤為重要,因?yàn)榇蠖鄶?shù)這些病理表型的特征在于特定蛋白質(zhì)的異常聚集(圖8)。在細(xì)胞和動(dòng)物模型中提供了指向蛋白病變中病理ROS形成以及NRF2作為蛋白酶體和自噬調(diào)節(jié)因子的證據(jù)(Pajares等, 2017)。最初,據(jù)報(bào)道自噬貨物蛋白質(zhì)sequestosome 1(SQSTM1)與NRF2競(jìng)爭(zhēng)結(jié)合KEAP1。最初,有報(bào)道稱自噬貨物蛋白sequestosome 1 (SQSTM1)與NRF2競(jìng)爭(zhēng)與KEAP1的結(jié)合。SQSTM1將KEAP1置于自噬體降解途徑,因此上調(diào)NRF2(Komatsu等,2010)。SQSTM1將KEAP1置于自噬體降解途徑,因此上調(diào)NRF2(Komatsu等,2010)。最近,發(fā)現(xiàn)NRF2調(diào)節(jié)參與自噬起始、貨物識(shí)別、延伸和自溶酶體清除的自噬基因的表達(dá)(Pajares等,2016)。在本研究中,Nrf2-/-小鼠中,轉(zhuǎn)基因過(guò)表達(dá)人突變淀粉樣前體蛋白和tau蛋白導(dǎo)致淀粉樣病變和tau蛋白病加重。NRF2缺乏癥和神經(jīng)退行性變之間的聯(lián)系被越來(lái)越多的動(dòng)物模型證據(jù)所支持(Johnson and Johnson, 2015)。一般的觀點(diǎn)是受損的神經(jīng)元試圖激活NRF2依賴性轉(zhuǎn)錄,可能是為了增加它們自身的存活率。此外,星形膠質(zhì)細(xì)胞中NRF2的上調(diào)參與代謝補(bǔ)償,包括增加GSH的供應(yīng)以增強(qiáng)其增殖能力(Bolanos,2016),而小膠質(zhì)細(xì)胞中的NRF2上調(diào)使該免疫細(xì)胞恢復(fù)到靜止?fàn)顟B(tài)(Rojo等,2014a)。
Ramsey等人(2007)證明了NRF2在PD患者的多巴胺能神經(jīng)元中的核定位。其他研究發(fā)現(xiàn)淀粉樣蛋白前體蛋白和tau損傷神經(jīng)元表達(dá)NRF2及其靶SQSTM1水平升高,可能是通過(guò)自噬清除這些毒性蛋白的補(bǔ)償機(jī)制(Lastres-Becker等,2014; Pajares等,2016)。與這些結(jié)果一致,AD和PD腦中HO-1、NQO1、GCLM和SQSTM1水平升高(van Muiswinkel等, 2004;Cuadrado等,2009;Schipper等,2009;LastresBecker等,2016)。此外,與NRF2表達(dá)相關(guān)的細(xì)胞保護(hù)蛋白,如NQO1和SQSTM1,在路易體中被部分隔離,表明PD患者中NRF2特征的神經(jīng)保護(hù)能力受損(Lastres-Becker等,2016)。這種差異的一種可能解釋是NRF2及其靶基因水平可能在衰老和疾病進(jìn)展過(guò)程中發(fā)生變化。
NFE2L2的一些SNP單倍型與ALS,AD或PD的風(fēng)險(xiǎn)降低或延遲發(fā)作相關(guān)。在關(guān)于先前與高基因表達(dá)相關(guān)的三種功能性啟動(dòng)子SNPs的兩項(xiàng)研究中分析了ALS的發(fā)病。有趣的是,這種單倍型與ALS發(fā)病延遲4年有關(guān)(Bergstrom等,2014),但另一項(xiàng)研究未發(fā)現(xiàn)明確的相關(guān)性(LoGerfo等,2014)。關(guān)于AD,一個(gè)單倍型等位基因與AD的2年早期發(fā)病相關(guān),表明NFE2L2基因的變體可能影響AD進(jìn)展(von Otter等,2010b)。已經(jīng)更詳細(xì)地分析了NFE2L2與PD的遺傳關(guān)聯(lián)。NFE2L2啟動(dòng)子中的三個(gè)SNPs(rs6721961,rs6706649和rs35652124)在病例對(duì)照研究中被證明為保護(hù)性單倍型(von Otter等,2010a)。這種單倍型在瑞典隊(duì)列中延遲了疾病的發(fā)作,甚至降低了波蘭隊(duì)列中PD的風(fēng)險(xiǎn)。這些結(jié)果得到了四項(xiàng)新的獨(dú)立的歐洲病例對(duì)照研究的支持(von Otter等,2014),但未在臺(tái)灣人群中復(fù)制(Chen等,2013),這表明種族和環(huán)境因素存在差異。另一種方法是將來(lái)自嗅黏膜的PD細(xì)胞暴露于煙提物或殺蟲(chóng)劑中,以評(píng)估基因-環(huán)境的相互作用,并且鑒定了幾種影響對(duì)這些毒素的易感性的SNPs(Todorovic等,2015)??偠灾?,NRF2的輕微激活(例如對(duì)于NFE2L2基因的某些功能性單倍型所發(fā)現(xiàn)的)應(yīng)該足以觸發(fā)大腦中的保護(hù)機(jī)制。

IV. 癌癥中Keap1的悖論

NRF2在腫瘤發(fā)生和進(jìn)一步腫瘤進(jìn)展中的作用似乎存在明顯的二分法。一方面,通過(guò)激活生物轉(zhuǎn)化反應(yīng),NRF2可以防止化學(xué)誘導(dǎo)的癌癥發(fā)生。臨床前研究表明NRF2在大鼠體內(nèi)經(jīng)藥理激活后,對(duì)黃曲霉毒素B(1)誘導(dǎo)的肝癌具有完全的保護(hù)作用(Johnson等, 2014)。相反,NRF2引發(fā)的保護(hù)性反應(yīng)在確定的癌癥中提供了生長(zhǎng)優(yōu)勢(shì),這將是本節(jié)的重點(diǎn)。
不斷增加的ROS水平可以通過(guò)改變基因組穩(wěn)定性來(lái)維持腫瘤發(fā)生,同時(shí)激活特定的氧化還原信號(hào)轉(zhuǎn)導(dǎo)和促進(jìn)腫瘤細(xì)胞存活和增殖的炎癥過(guò)程(Reuter等,2010)。因此,NRF2的上調(diào)代表癌細(xì)胞適應(yīng)的機(jī)制,以耐受推動(dòng)腫瘤進(jìn)展的高ROS水平(Schumacker,2006)以及維持導(dǎo)致腫瘤復(fù)發(fā)和遠(yuǎn)處轉(zhuǎn)移形成的癌癥干細(xì)胞(Ryoo等,2016)。例如,來(lái)自人類結(jié)腸直腸腫瘤的癌癥干細(xì)胞中的NRF2特征指出了由高水平的GCLC,谷胱甘肽過(guò)氧化物酶和硫氧還蛋白還原酶-1介導(dǎo)的保護(hù)機(jī)制,這是這些細(xì)胞抵抗應(yīng)激物和化學(xué)治療劑的能力的基礎(chǔ)(Emmink等,2013)。從這個(gè)角度來(lái)看,NRF2在癌細(xì)胞中表現(xiàn)得像一個(gè)致癌基因,通過(guò)誘導(dǎo)ARE介導(dǎo)的細(xì)胞保護(hù)反應(yīng)的慢性激活,可以幫助其適應(yīng)其氧化環(huán)境(Panieri和Santoro,2016)。已經(jīng)報(bào)道了NRF2的惡性激活的幾種機(jī)制,包括體細(xì)胞突變,表觀遺傳學(xué)和致癌信號(hào)傳導(dǎo)改變。
據(jù)報(bào)道,沿著NFE2L2的編碼序列在癌癥中接近600個(gè)體細(xì)胞突變(Gao等人,2017)。在圖9中,我們顯示了來(lái)自10,000名癌癥患者的數(shù)據(jù)集的結(jié)果(Zehir等人,2017)。在大多數(shù)情況下,這些突變改變了NRF2的DLG和ETGE基序與KEAP1的相互作用,從而誘導(dǎo)NRF2在幾種實(shí)體瘤(包括食道癌,皮膚癌,肺癌和喉癌)中的過(guò)度活化(Kim等,2010b; Taguchi和 Yamamoto,2017)。例如,在晚期食管鱗狀細(xì)胞癌中,NRF2功能獲得性突變與腫瘤復(fù)發(fā)和預(yù)后不良相關(guān),其原因包括增殖增加、獨(dú)立依附生存以及對(duì)化療和放療的抵抗(Shibata 等, 2011)。KEAP1基因中的功能喪失突變?cè)谝恍?shí)體腫瘤例如肺癌中也是常見(jiàn)的(Singh等人,2006)?;谶@一通路調(diào)控β-TrCP/NRF2的有力證據(jù),奇怪的是在NRF2與β-TrCP的交界面未發(fā)現(xiàn)干擾體突變。這一事實(shí)表明,由于未知的原因,這些突變是不可生存的,或者β-TrCP逃逸導(dǎo)致NRF2水平的升高不足以驅(qū)動(dòng)致癌性。
盡管如此,體細(xì)胞突變僅在一小部分癌癥患者中引起長(zhǎng)期/慢性NRF2激活。在基因表達(dá)水平上,有趣的是位于人NRF2基因的ARE增強(qiáng)子的SNP rs6721961(-617C>A)的等位基因消除了NRF2的自身誘導(dǎo),這與這些癌癥患者的顯著存活相關(guān)(Okano等,2013)。已經(jīng)在肺腫瘤中描述了由于KEAP1的三個(gè)CpG位點(diǎn)的啟動(dòng)子高甲基化引起的表觀遺傳變化,導(dǎo)致隨后的NRF2活化,其可以通過(guò)5-氮雜-2’-脫氧胞苷處理逆轉(zhuǎn)NRF2的活化(Wang等,2008)。最近已經(jīng)回顧了miRNAs在NRF2水平的轉(zhuǎn)錄后調(diào)節(jié)中的作用(Kurinna和Werner,2015)。簡(jiǎn)而言之,miR200a靶向人乳腺癌細(xì)胞中的KEAP1 mRNA,導(dǎo)致其降解并隨后激活NRF2(Eades等,2011)。反過(guò)來(lái),miR28促進(jìn)NRF2 mRNA的降解(Yang等人,2011)。
致癌基因或突變的腫瘤抑制因子可以增強(qiáng)癌癥中NRF2的活化。KRAS,BRAF或c-MYC的內(nèi)源性致癌等位基因上調(diào)NRF2,可能是通過(guò)致癌基因介導(dǎo)的ROS和隨后的KEAP1慢性失活(DeNicola等,2011)。腫瘤抑制因子p53的突變形式,通過(guò)增強(qiáng)營(yíng)養(yǎng)攝取和構(gòu)建塊的合成來(lái)維持癌細(xì)胞的生長(zhǎng),也可以通過(guò)與結(jié)合NRF2啟動(dòng)子的Sp1轉(zhuǎn)錄因子的串?dāng)_來(lái)上調(diào)NRF2(Tung等,2015)。
各種蛋白激酶對(duì)NRF2(磷酸-NRF2)的磷酸化是107種肝細(xì)胞癌中潛在的激活機(jī)制。增加的磷酸化NRF2水平與表現(xiàn)出這種獨(dú)特表型的患者的KEAP1表達(dá)降低和5年總體存活率差有關(guān)(Chen等,2016)。此外,磷酸酶和張力蛋白同源物(PTEN)腫瘤抑制因子的突變維持過(guò)度活躍的和致癌的磷脂酰肌醇-3-激酶(PI3K)-AKT信號(hào)傳導(dǎo),并由于為NRF2蛋白酶體降解的PTEN / GSK-3 / β-TrCP途徑的下調(diào)而導(dǎo)致NRF2活性增加。(Rada等,2011,2012; Cuadrado,2015)。針對(duì)PTEN / GSK-3 / β-TrCP途徑的治療干預(yù)措施應(yīng)考慮到GSK-3既可作為腫瘤抑制因子又可作為腫瘤啟動(dòng)子,并且還與癌癥干細(xì)胞的產(chǎn)生有關(guān)(McCubrey等,2014)。
一些應(yīng)激誘導(dǎo)的蛋白質(zhì)與KEAP1相互作用,因此在癌細(xì)胞中,這些蛋白與KEAP1結(jié)合的NRF2競(jìng)爭(zhēng)。因此,NRF2逃脫了KEAP1介導(dǎo)的降解。NRF2與KEAP1結(jié)合的競(jìng)爭(zhēng)對(duì)手之一是自噬銜接蛋白SQSTM1的磷酸化形式,該蛋白發(fā)生在癌細(xì)胞用于維持自身生長(zhǎng)的選擇性自噬過(guò)程中(Shimizu等, 2016)。還證明了促進(jìn)癌癥干細(xì)胞中細(xì)胞周期停滯的細(xì)胞周期蛋白依賴性激酶抑制劑p21通過(guò)其KRR基序與NRF2中的DLG和ETGE基序的相互作用抑制NRF2與KEAP1的結(jié)合(Chen等人,2009)。最近,顯示具有ETGE基序的二肽基肽酶3可以與NRF2競(jìng)爭(zhēng)結(jié)合KEAP1(Hast等人,2013)。可能由氧化還原狀態(tài)的長(zhǎng)期改變誘導(dǎo)的二肽基肽酶3的過(guò)表達(dá)與ARE基因的表達(dá)增加和預(yù)后不良相關(guān),特別是在雌激素受體陽(yáng)性乳腺癌中(Lu等人,2017)。
NRF2誘導(dǎo)導(dǎo)致癌癥進(jìn)展的代謝變化。例如,一項(xiàng)多平臺(tái)非靶向代謝組學(xué)研究確定了乳腺腫瘤樣本中代謝物變化的模式(Tang等,2014)。他們發(fā)現(xiàn)GSH和3-(4-羥基苯基)乳酸通過(guò)與NRF2的相互作用與BRCA1參與氧化還原穩(wěn)態(tài)呈正相關(guān)。代謝組學(xué)研究還表明,NRF2可以增加癌細(xì)胞中的有氧糖酵解,以支持其高能量需求。這通過(guò)NRF2介導(dǎo)的錳-超氧化物歧化酶表達(dá)的誘導(dǎo)發(fā)生,導(dǎo)致線粒體過(guò)氧化氫的產(chǎn)生升高和AMPK的活化。該過(guò)程由caveolin-1調(diào)節(jié),其直接結(jié)合NRF2和KEAP1,并阻礙NRF2活化并因此阻礙糖酵解轉(zhuǎn)變。這顯然解釋了為什么通常更具侵略性的糖酵解腫瘤具有caveolin-1低/ Mn超氧化物歧化酶高的表型(Hart等,2016)。NRF2還可以驅(qū)動(dòng)葡萄糖和谷氨酰胺向腫瘤細(xì)胞增殖所需的合成代謝途徑(Mitsuishi等,2012)。在PI3K-AKT信號(hào)通路活躍和KEAP1活性缺失的情況下,NRF2被證明可以誘導(dǎo)癌癥中葡萄糖代謝從糖酵解向合成代謝途徑(嘌呤合成)的轉(zhuǎn)移(Mitsuishi等, 2012;Xu等, 2016a)。以上這一點(diǎn)被強(qiáng)調(diào)通過(guò)NRF2介導(dǎo)的參與磷酸戊糖途徑的基因轉(zhuǎn)錄和NADPH(葡萄糖6磷酸脫氫酶;磷酸葡萄糖酸脫氫酶,蘋果酸酶1,異檸檬酸脫氫酶1,轉(zhuǎn)酮醇酶和轉(zhuǎn)醛酶)的產(chǎn)生以及涉及嘌呤核苷酸合成(磷酸核糖焦磷酸酰胺轉(zhuǎn)移酶,亞甲基四氫葉酸脫氫酶2)的相關(guān)基因。
NRF2的激活賦予癌細(xì)胞生長(zhǎng)優(yōu)勢(shì)的事實(shí)可能會(huì)爭(zhēng)辯說(shuō),在這項(xiàng)工作中提到的慢性疾病NRF2的藥理學(xué)活化可能意味著患癌癥的高風(fēng)險(xiǎn)。然而,必須考慮到NRF2的致癌活性需要其基因或KEAP1發(fā)生突變,從而導(dǎo)致NRF2信號(hào)的持續(xù)高水平誘導(dǎo)。但在藥理學(xué)治療中并非如此,在藥理學(xué)治療中,調(diào)節(jié)藥物劑量和NRF2活性是可能的。此外,經(jīng)驗(yàn)證據(jù)表明,參與NRF2激活劑臨床試驗(yàn)的受試者沒(méi)有顯示出更高的癌癥風(fēng)險(xiǎn)。自從2013年獲得監(jiān)管機(jī)構(gòu)批準(zhǔn)以來(lái),已經(jīng)服用NRF2活化劑富馬酸二甲酯數(shù)年的MS患者就是最好的例證。相反,在癌癥患者中使用NRF2抑制劑可能導(dǎo)致NRF2疾病組中描述的病理表型的表現(xiàn)。當(dāng)NRF2抑制劑到達(dá)臨床時(shí),這種可能性需要進(jìn)一步研究。

V. NRF2藥物組

  本節(jié)試圖開(kāi)發(fā)一種NRF2藥物組,該藥物組可用于未來(lái)的臨床指導(dǎo),以NRF2疾病組的病理表型為中心靶向NRF2進(jìn)行治療。如圖2B中所述,通過(guò)靶向KEAP1來(lái)正在尋求NRF2的藥理學(xué)活化以增加其穩(wěn)定性。這些策略基于發(fā)現(xiàn)改變KEAP1結(jié)構(gòu)的親電化合物或阻止NRF2與KEAP1對(duì)接的小分子。雖然尚未經(jīng)驗(yàn)證實(shí),但GSK-3抑制劑應(yīng)阻止b-TrCP識(shí)別NRF2,并且可發(fā)現(xiàn)一些化合物以防止NRF2與b-TrCP的結(jié)合。用靶向bZip二聚化結(jié)構(gòu)域的化合物分析NRF2的抑制作用,以防止形成活性NRF2 / MAF異二聚體。通過(guò)與其他轉(zhuǎn)錄因子比較,可能發(fā)現(xiàn)阻礙NRF2 / MAF異二聚體與ARE結(jié)合的小分子(圖9C)。本節(jié)總結(jié)了新藥物發(fā)現(xiàn)和重新調(diào)整藥物用途的轉(zhuǎn)化觀點(diǎn)中最重要的發(fā)現(xiàn)。

 
 
圖9. 在MSK IMPACT臨床測(cè)序組(MSKCC)研究(Zehir等,2017)的腫瘤中發(fā)現(xiàn)的體細(xì)胞突變和抑制NRF2的藥理學(xué)策略。(A)具有NRF2突變的腫瘤的百分比。 (B)沿NRF2多肽的突變分布。(C)NRM2 / MAFF異二聚體與ARE元件之間相互作用的PyMOL表示。 藍(lán)色:NRF2; 粉紅色:MAFF。 紅色箭頭表示可能通過(guò)小分子抑制NRF2的機(jī)制,這些小分子可以靶向NRF2和MAF蛋白之間相互作用的bZip結(jié)構(gòu)域(PPI抑制劑)或NRF2-MAF異二聚體與ARE相互作用的界面[DNA-蛋白質(zhì)相互作用(DPI)]

A. 親電NRF2誘導(dǎo)劑

大多數(shù)已知的生理學(xué)或藥理學(xué)NRF2誘導(dǎo)劑是親電分子,其通過(guò)氧化或烷基化共價(jià)修飾富含硫醇的KEAP1蛋白中存在的半胱氨酸殘基(Hur和Gray,2011; Satoh等,2013)。KEAP1是最適合作為親電子或氧化還原傳感器的蛋白質(zhì)之一,因?yàn)樗谌梭w中含有27個(gè)半胱氨酸殘基,并起到親電子陷阱的作用。KEAP1的半胱氨酸C151,C273和C288似乎是最容易發(fā)生親電子反應(yīng)的(圖2B),盡管存在一些特異性(Yamamoto等,2008; Saito等,2015)。親電子加合物以兩種不同的方式抑制KEAP1。 一種是誘導(dǎo)KEAP1的構(gòu)象變化,這將導(dǎo)致其對(duì)NRF2的結(jié)合能力喪失。另一個(gè)是阻斷KEAP1和CUL3 / RBX1之間的相互作用,導(dǎo)致KEAP1與NRF2的隔離以及新合成的NRF2的進(jìn)一步穩(wěn)定化(Rachakonda等,2008; Baird和Dinkova-Kostova,2013; Cleasby等, 2014; Saito等,2015)。
NRF2調(diào)制劑的至少30項(xiàng)近期專利在世界國(guó)際產(chǎn)權(quán)組織中被收錄。這些專利正在保護(hù)查爾酮衍生物,新型酰胺三萜衍生物,氘取代的富馬酸衍生物,3-烷基氨基-1H-吲哚丙烯酸酯衍生物,甲醇酰胺,含有活化乙烯基的芐基衍生物,穿心蓮內(nèi)酯或[S]+阿撲嗎啡,以及倍半萜內(nèi)酯衍生物(Sun等,2017)。盡管從臨床前概念驗(yàn)證的角度來(lái)看,大多數(shù)這些化合物在某種程度上被證明是有用的,但它們的臨床價(jià)值迄今通常非常有限。其中只有少數(shù)藥物進(jìn)入了臨床試驗(yàn),而食品和藥物管理局(Food and Drug Administration)或歐洲藥品管理局(European Medicines Agency)等監(jiān)管機(jī)構(gòu)批準(zhǔn)的藥物更少。我們?cè)谶@項(xiàng)研究中討論了轉(zhuǎn)化管道中最發(fā)達(dá)的NRF2激活劑。
富馬酸酯是KEAP1改性劑的最突出的例子,并且富馬酸二甲酯(DMF)是迄今為止唯一的食品和藥物管理局和歐洲藥品管理局批準(zhǔn)的藥物,其注冊(cè)為NRF2活化劑。單酯形式的DMF,富馬酸單甲酯(MMF)被描述為其活性代謝物。DMF和MMF是邁克爾受體,其直接與KEAP1中存在的半胱氨酸殘基反應(yīng)(Lin等,2011)。
從NRF2的功能尚不清楚開(kāi)始,DMF和其他富馬酸酯已經(jīng)用于治療牛皮癬超過(guò)50年。該化合物在歐洲以商品名Fumaderm獲得許可。臨床試驗(yàn)顯示,在DMF治療12-16周后,銀屑病面積和嚴(yán)重程度指數(shù)降低至50%-80%(Altmeyer等,1994; Mrowietz等,1998)。最近,在III期試驗(yàn)(BRIDGE)中,DMF已證明其在治療患有中度至重度慢性斑塊狀銀屑病的成人中的功效(Mrowietz等,2017)。富馬酸鹽在銀屑病病變緩解中的作用機(jī)制包括外周T細(xì)胞數(shù)量的減少以及從Th1向Th2免疫應(yīng)答的轉(zhuǎn)變(Ghoreschi等,2011; Tahvili等,2015)。在另一種自身免疫性疾病SLE中,富馬酸酯已被用作治療嚴(yán)重、廣泛和難治性皮膚表現(xiàn)的全身聯(lián)合療法(Saracino和Orteu,2017)。
2013年,DMF以商品名Tecfidera被批準(zhǔn)用于治療MS(Xu等,2015)。在MS患者中使用DMF是通過(guò)在EAE的MS小鼠模型中獲得的陽(yáng)性結(jié)果推動(dòng)的。對(duì)疾病進(jìn)程和組織學(xué)的顯著治療效果與脊髓中巨噬細(xì)胞介導(dǎo)的炎癥顯著減少有關(guān)。血液中的多重細(xì)胞因子分析證明DMF處理的動(dòng)物中抗炎細(xì)胞因子IL-10的增加(Schilling等人,2006)。此外,DMF還改善了野生型中髓鞘,軸突和神經(jīng)元的保存,但在Nrf2-/-小鼠中沒(méi)有(Ellrichmann等,2011)。在人類中,DMF顯示MS病變和年復(fù)發(fā)率顯著降低(Schimrigk等,2006)。兩項(xiàng)III期臨床試驗(yàn)DEFINE和CONFIRM證實(shí)了這些結(jié)果(Fox等,2012; Gold等,2012)。因此,DMF目前被用作復(fù)發(fā)緩解型MS的第一線治療,其不能通過(guò)傳統(tǒng)療法治療。新的DMF配方正在測(cè)試和申請(qǐng)專利,以提高藥物的生物利用度和功效(Sun等,2017)。例如,MMF已被用于開(kāi)發(fā)第二代NRF2誘導(dǎo)物作為前藥(Zeidan等,2014)。鉛化合物ALKS-8700,一種MMF的2-(2,5-二氧代-1-吡咯烷基)乙酯衍生物,在體內(nèi)迅速轉(zhuǎn)化為MMF,因此提高了其生物利用度并減少了胃腸道副作用。ALKS-8700目前正在進(jìn)行III期臨床試驗(yàn)(EVOLVE MS)。
DMF和MMF調(diào)節(jié)免疫應(yīng)答。例如,它們通過(guò)減少炎性細(xì)胞因子的釋放并因此減少DCs處理抗原的能力來(lái)抑制DCs的成熟。此外,DMF和MMF激活天然殺傷細(xì)胞以裂解DCs并增強(qiáng)DCs和T細(xì)胞的凋亡(Ghoreschi等,2011; Al-Jaderi和Maghazachi,2015)。因此,DMF和MMF阻礙T細(xì)胞介導(dǎo)的自身反應(yīng)。一些研究表明,DMF還通過(guò)觸發(fā)GSH耗竭誘導(dǎo)II型DCs,這導(dǎo)致HO-1活性增強(qiáng)和STAT1磷酸化抑制。這些經(jīng)典的II型DCs抑制Th1和Th17介導(dǎo)的反應(yīng),支持Th2的反應(yīng)。此外,通過(guò)DCs增加IL-10的產(chǎn)生有利于CD4+T細(xì)胞向抑制性Treg表型的分化(Ockenfels等,1998; Ghoreschi等,2011)。DMF還抑制NF-κB的核轉(zhuǎn)位(Peng等,2012),從而在小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞(Brennan等,2017)以及外周血單核細(xì)胞(Eminel等,2017)中產(chǎn)生炎癥介質(zhì),如TNF-α,IL-1β,IL-6,趨化因子,粘附分子和一氧化氮。此外,DMF發(fā)揮抗血管生成作用,其依賴于內(nèi)皮細(xì)胞中血管內(nèi)皮生長(zhǎng)因子受體-2表達(dá)的下調(diào)(Meissner等,2011)。最近的研究結(jié)果表明,DMF減少了CD4+,CD8+,Th1和Th17細(xì)胞的數(shù)量,而CD4+/CD8+比例和Th2亞群在這些患者的血液中增加。有趣的是,DMF/MMF對(duì)T細(xì)胞活化的抑制作用主要局限于記憶T細(xì)胞(Wu等, 2017)。DMF或MMF的這些免疫調(diào)節(jié)活性對(duì)于保護(hù)少突膠質(zhì)細(xì)胞免受ROS誘導(dǎo)的細(xì)胞毒性具有重要意義(Scannevin等,2012)。
其他機(jī)制可以解釋NF-κB的抑制,而與NRF2活化無(wú)關(guān)。因此,DMF可能與幾種調(diào)節(jié)NF-kB信號(hào)傳導(dǎo)的蛋白質(zhì)中的半胱氨酸殘基相互作用(Blewett等,2016)。此外,DMF可以抑制泛素偶聯(lián)酶,從而防止NF-κB的IkB抑制因子在IL-1β或Toll樣受體激動(dòng)劑的作用下降解(McGuire等, 2016)。此外,DMF直接結(jié)合蛋白激酶C-θ中的特定半胱氨酸殘基,這是參與T細(xì)胞受體信號(hào)傳導(dǎo)的關(guān)鍵激酶(Blewett等,2016)。此外,MMF和DMF激活羥基羧酸受體-2,導(dǎo)致NF-κB的抑制和促炎細(xì)胞因子和粘附分子的下調(diào)(Chen等,2014; Gillard等,2015)并導(dǎo)致中性粒細(xì)胞浸潤(rùn)減少 (Chen等,2014)。盡管這些NRF2非依賴性作用與EAE的急性炎癥期相關(guān),但DMF在慢性自身免疫性脫髓鞘中的神經(jīng)保護(hù)功效取決于NRF2活化(Linker等,2011)。在Nrf2-/-和野生型小鼠中DMF治療的臨床益處與炎性Th1和Th17細(xì)胞的減少以及抗炎M2單核細(xì)胞的誘導(dǎo)相關(guān)。同時(shí),在野生型中觀察到CD80和CD86共刺激分子的表達(dá)降低,但在Nrf2-/-小鼠中未觀察到,表明至少這些作用是NRF2依賴性的(Schulze-Topphoff等,2016)。
DMF用于治療自身免疫疾病的成功表明,具有由慢性,低級(jí)炎癥和病理性ROS形成強(qiáng)調(diào)的共同病理機(jī)制的其他疾病可能受益于該藥物的重新定位。在亨廷頓舞蹈病的小鼠模型中,DMF治療保留了存活率、肌肉功能和體重,這與完整神經(jīng)元數(shù)量的增加有關(guān)(Ellrichmann等,2011)。此外,在最近的PD臨床前研究中,使用該疾病的α-突觸核蛋白病模型,由于自噬誘導(dǎo)受損,DMF在野生型中具有神經(jīng)保護(hù)作用,但在Nrf2-/-小鼠中則不具有神經(jīng)保護(hù)作用(Lastres-Becker等,2016)。
DMF被證明可預(yù)防糖尿病小鼠的內(nèi)皮功能障礙和心血管病理性ROS形成和炎癥(Sharma等,2017),并且在注射鏈脲佐菌素后載脂蛋白E缺陷小鼠中動(dòng)脈粥樣硬化、腎功能不全和其他糖尿病并發(fā)癥減少(Tan等,2014)。此外,一些研究表明,DMF可能通過(guò)抑制NF-κB途徑發(fā)揮抗腫瘤活性,因此在治療侵襲性癌癥中增加了治療價(jià)值(Kastrati等,2016)。DMF是網(wǎng)絡(luò)藥理學(xué)方法中老藥新用概念的相關(guān)實(shí)例。
合成三萜類化合物是2-氰基-3,12-二氧代 - 油酸-1,9(11) - 二烯-28-酸鹽(CDDO; 巴多索隆,RTA401)的衍生物,其類似于天然產(chǎn)物齊墩果酸。它們通過(guò)其α-β不飽和支架表現(xiàn)出邁克爾受體活性,并且代表了最有效的NRF2誘導(dǎo)劑(Sun等,2017)。它們與KEAP1的C151相互作用并阻礙其與CUL3的相互作用,從而導(dǎo)致NRF2激活(Cleasby等,2014)。原理證明研究強(qiáng)烈支持合成的三萜類化合物用于退行性疾病,并且正在成為Reata / Abbott作為炎癥抗氧化劑調(diào)節(jié)劑的深入研究的焦點(diǎn)。例如,CDDO-咪唑(CDDO-Im RTA403)在野生型而非Nrf2-/-小鼠的腹膜中性粒細(xì)胞中誘導(dǎo)各種抗氧化基因(Hmox1,Gclc,Gclm和Nqo1)的表達(dá),并減弱LPS誘導(dǎo)的ROS產(chǎn)生和產(chǎn)生和促炎細(xì)胞因子的產(chǎn)生,從而降低死亡率(Thimmulappa等,2006b)。CDDO-乙基酰胺(RTA405)和CDDO-CDDO-三氟乙基酰胺(RTA 404)在毒素誘導(dǎo)的PD模型(1-甲基-4-苯基-1,2,3,6-四氫吡啶)中測(cè)量的所有終點(diǎn)均具有顯著作用 (Kaidery等,2013)。在MS的EAE模型中,CDDOCDDO-三氟乙基酰胺抑制炎癥、病理性ROS形成和髓鞘變性(Pareek等,2011)。
CDDO-甲酯(CDDO-Me,RTA 402)是在用于治療糖尿病腎病的臨床試驗(yàn)中達(dá)到的第一個(gè)CDDO(Pergola等,2011)。雖然第二階段的結(jié)果非常令人鼓舞,但由于心血管安全問(wèn)題(Zhang,2013),CDDO-Me后來(lái)在第三階段(BEACON試驗(yàn))被撤回,這與NRF2無(wú)關(guān),但最有可能是脫靶改變內(nèi)皮素信號(hào)傳導(dǎo)(de Zeeuw等,2013; Chin等,2014)。目前,CDDO-Me正在進(jìn)行臨床研究,作為Alport綜合征和肺動(dòng)脈高壓的潛在治療方法(表2)。為了改善其安全性,進(jìn)一步的研究導(dǎo)致了CDDO-二氟丙酰胺(RTA-408, omaveloxone)的開(kāi)發(fā),該藥物目前正在進(jìn)行二期試驗(yàn),用于治療弗里德雷希的共濟(jì)失調(diào)、眼部炎癥和眼部手術(shù)后疼痛。
奧替普拉是一種有機(jī)硫化合物,用作抗血吸蟲(chóng)病藥物,目前正在進(jìn)行III期試驗(yàn),用于治療非酒精性脂肪性肝炎。用于治療亨廷頓氏病的高級(jí)臨床試驗(yàn)正在開(kāi)發(fā)中,米諾環(huán)素是一種抗生素,由于NRF2活化而具有神經(jīng)保護(hù)作用(Kuang等,2009)。用于治療急性腎病的I期臨床研究中的另一種NRF2誘導(dǎo)劑是CXA-10,一種通過(guò)激活NRF2具有抗炎特性的硝基脂肪酸(Batthyany和Lopez,2015)。近年來(lái),許多具有相同作用機(jī)制的NRF2誘導(dǎo)劑已被描述(Buendia等, 2015a,b, 2016),其中一些還處于臨床前研究階段,如化合物VEDA-1209,它是一種查爾酮衍生物,具有良好的抗炎作用,可用于潰瘍性結(jié)腸炎的治療。
SFN是由有機(jī)硫化合物蘿卜硫苷的酶促裂解產(chǎn)生的異硫氰酸酯,其存在于西蘭花、卷心菜和其他十字花科植物的芽苗中。催化反應(yīng)由植物中發(fā)現(xiàn)的黑芥子酶和胃腸道的微生物群驅(qū)動(dòng)(Kensler等,2013)。催化反應(yīng)由植物中發(fā)現(xiàn)的黑芥子酶和胃腸道的微生物群驅(qū)動(dòng)(Kensler等,2013)。最近,SFN已經(jīng)通過(guò)化學(xué)合成獲得(Kim等,2015)。通過(guò)向患有T2DM的患者施用含有SFN的花椰菜芽粉,實(shí)現(xiàn)了SFN向臨床的轉(zhuǎn)化(Bahadoran等,2012)。西蘭花粉降低血漿丙二醛和氧化低密度脂蛋白(LDL),提高總抗氧化能力。心血管危險(xiǎn)因素如血清甘油三酯,氧化LDL/LDL比率和血漿致動(dòng)脈粥樣硬化指數(shù)(甘油三酯對(duì)數(shù)/高密度脂蛋白比率)也降低。此外,促炎標(biāo)志物如C-反應(yīng)蛋白和IL-6減少。在最近的一項(xiàng)研究中,SFN作為濃縮西蘭花芽提取物使用,通過(guò)NRF2的核轉(zhuǎn)位抑制肝細(xì)胞葡萄糖的生成,并降低參與糖異生的關(guān)鍵酶的表達(dá)。此外,SFN降低了患有T2DM的肥胖患者的空腹血糖和糖化血紅蛋白(Axelsson等,2017)。SFN誘導(dǎo)的NRF2活化通過(guò)降低ROS負(fù)荷和抑制NF-κB和TGF-β1信號(hào)傳導(dǎo)途徑來(lái)保護(hù)腎細(xì)胞免于狼瘡性腎炎(Jiang等,2014a)。
關(guān)于神經(jīng)退行性疾病,已經(jīng)表明SFN穿過(guò)血腦屏障并提供足夠的腦生物利用度來(lái)激活NRF2特征并減少LPS誘發(fā)的神經(jīng)炎癥,這反映在促炎性標(biāo)志物(誘導(dǎo)型一氧化氮合酶、IL-6、TNF-α)的減少中和海馬中的小神經(jīng)膠質(zhì)細(xì)胞增生(Innamorato等,2008)。SFN還保護(hù)多巴胺能神經(jīng)元免受帕金森病毒1-甲基-4-苯基-1,2,3,6-四氫吡啶的影響,并減弱星形膠質(zhì)細(xì)胞增生和小神經(jīng)膠質(zhì)細(xì)胞增生(Jazwa等,2011)。與這些發(fā)現(xiàn)一致,SFN降低了磷酸化tau水平并增加了Beclin-1和LC3-II,表明NRF2活化可能通過(guò)大腦中的自噬促進(jìn)這種毒性蛋白的降解(Jo等,2014)。SFN處理的脊髓損傷大鼠炎癥因子水平明顯降低,挫傷體積減小,協(xié)調(diào)性改善(Wang等, 2012)。該藥還通過(guò)保留血腦屏障和減少病理性ROS形成和炎癥細(xì)胞數(shù)量來(lái)改善EAE(Li等,2013)。SFN迄今已用于至少32項(xiàng)針對(duì)慢性疾病的臨床研究,如癌癥、哮喘、慢性腎病、T2DM、囊性纖維化、自閉癥和精神分裂癥(Duran等,2016; Houghton等,2016)(表2)。
 
表2. 選擇的NRF2誘導(dǎo)劑作為KEAP1的親電子修飾劑
該引用對(duì)應(yīng)于ClinicalTrials.gov中的代碼。
 
 
 
 
 
 

 
總之,這些觀察結(jié)果為其他SFN衍生化合物的開(kāi)發(fā)鋪平了道路,這些化合物表現(xiàn)出更好的藥代動(dòng)力學(xué)特征。SFN是一種在親水性介質(zhì)中穩(wěn)定性較差的油性物質(zhì)。其物理化學(xué)特征促使Evgen Pharma(Wilmslow,Cheshire,England)開(kāi)發(fā)出一種環(huán)糊精復(fù)合物制劑Sulforadex,該制劑正在進(jìn)行用于治療蛛網(wǎng)膜下腔出血的II期臨床試驗(yàn)。SFN還與褪黑激素雜交以產(chǎn)生ITH12674,該化合物被設(shè)計(jì)為具有用于治療腦缺血的雙重藥物-前藥作用機(jī)制(Egea等人,2015)。

姜黃素是姜黃中發(fā)現(xiàn)的主要類姜黃素,已被用于治療肥胖癥、代謝綜合征和前驅(qū)糖尿病。采用氣相色譜-電子沖擊質(zhì)譜法對(duì)姜黃素對(duì)大鼠肝臟的影響進(jìn)行了非靶向代謝組學(xué)研究。間斷攝入姜黃素可上調(diào)NRF2,并在抗肝損傷方面發(fā)揮抗氧化和抗炎作用(Qiu等,2016)。口服姜黃素可有效降低血清甘油三酯、IL-1β、IL-4和血管內(nèi)皮生長(zhǎng)因子,以及增加血液中脂聯(lián)素水平。在T2DM患者中,姜黃素降低空腹血糖,糖化血紅蛋白,血清游離脂肪酸,甘油三酯和尿酸的水平,并增加脂蛋白脂肪酶的水平(Na等,2013; Chuengsamarn等,2014)。

白藜蘆醇是一種保護(hù)植物免受真菌感染的多酚,存在于葡萄皮、紅葡萄酒、漿果和許多其他植物中。白藜蘆醇通過(guò)下調(diào)KEAP1表達(dá)和激活蛋白去乙?;竤irtuin-1來(lái)激活NRF2信號(hào)通路,從而發(fā)揮抗氧化作用(Ungvari等, 2010)。在健康受試者中,白藜蘆醇的飲食施用防止了血漿中膽固醇、內(nèi)毒素、促氧化劑和炎性標(biāo)記物(p47phox,KEAP1,IL-1β和TNF-α)的升高。這些事件與NRF2活性的升高相關(guān),NRF2活性升高是由NRF2靶標(biāo)NQO1和谷胱甘肽S-轉(zhuǎn)移酶的表達(dá)增強(qiáng)所確定的(Ghanim等,2011)。在T2DM患者中,治療4周后胰島素敏感性得到改善,這通過(guò)AKT增強(qiáng)胰島素信號(hào)傳導(dǎo),病理性ROS形成減少和糖化血紅蛋白水平降低來(lái)確定(Brasnyo等,2011; Bhatt等,2012)??偟膩?lái)說(shuō),白藜蘆醇在動(dòng)物模型和患者中可預(yù)防高血壓、高膽固醇血癥、動(dòng)脈粥樣硬化、缺血性心臟病、糖尿病和代謝綜合征等主要心血管、炎癥、氧化和代謝并發(fā)癥(Xia等, 2017)。

經(jīng)常被忽視的問(wèn)題是親電KEAP1抑制劑缺乏選擇性。親電試劑與細(xì)胞中不同的親核試劑發(fā)生反應(yīng),從而表現(xiàn)出非靶向和非預(yù)期的副作用。例如,CDDO-Im可與500多種不同的目標(biāo)相互作用(Yore等,2011)。通常,幾種蛋白磷酸酶在其催化中心含有對(duì)氧化還原敏感的半胱氨酸,并且一些KEAP1抑制劑可以修飾和滅活這些磷酸酶,因此擾亂信號(hào)傳導(dǎo)網(wǎng)絡(luò)。這些磷酸酶之一是PTEN(Lee等,2002; Kitagishi和Matsuda,2013; Han等,2015)。PTEN的催化C124殘基可以通過(guò)與強(qiáng)親電試劑例如CDDO-Im(Pitha-Rowe等,2009)和叔丁基氫醌(Rojo等,2014b)形成加合物來(lái)修飾。然后,PI3K/AKT通路的激活增加涉及GSK-3的抑制和NRF2隨后的穩(wěn)定(圖2C) (Rada等, 2011, 2012)。此外,KEAP1與其他同樣含有高親和力結(jié)合基序ETGE的蛋白相互作用(Hast等, 2013),如Bcl-2和IKKβ (Kim等, 2010a;Cazanave等,2014)。因此,從KEAP1缺陷細(xì)胞獲得的一些結(jié)果可能不一定與NRF2活化有關(guān)。

B. 用于NRF2激活的蛋白質(zhì)-蛋白質(zhì)相互作用抑制劑

為了克服選擇性的缺陷,出現(xiàn)了一類阻止NRF2與KEAP1對(duì)接的新型NRF2誘導(dǎo)劑(Richardson等,2015)。通過(guò)先前闡明KEAP1(Padmanabhan等人,2006)的X射線晶體結(jié)構(gòu)與含有NRF2的高親和力結(jié)合ETGE基序的肽結(jié)合,已經(jīng)實(shí)現(xiàn)了PPI抑制劑的使用(Lo等,2006)。KEAP1包含六葉β螺旋槳,具有特定的疏水和親水殘基,參與采用β-發(fā)夾結(jié)構(gòu)的EGGE基序的對(duì)接。對(duì)接主要受KEAP1的幾個(gè)精氨酸與ETGE基序中的兩個(gè)谷氨酸之間的靜電相互作用的支持(Lo等人,2006; Padmanabhan等人,2006)。NRF2的低親和力DLG基序與KEAP1的對(duì)接也被表征(Tong等, 2007)?;谶@些相互作用,擬肽化合物是PPI抑制劑的第一個(gè)例子,其對(duì)親電試劑的選擇性顯著提高(Hu等,2013; Marcotte等,2013; Winkel等,2015)。這些抑制劑在細(xì)胞中表現(xiàn)出較弱的活性,現(xiàn)在已經(jīng)報(bào)道了一種新的基于循環(huán)肽的激發(fā)策略。這些肽之一顯示出對(duì)KEAP1的高結(jié)合親和力和NRF2的激活,并在小鼠巨噬細(xì)胞中引發(fā)抗炎作用(Lu等,2018)。

最近對(duì)KEAP1/NRF2相互作用的新多肽和小分子抑制劑的發(fā)現(xiàn)進(jìn)行了綜述(Abed等, 2015;Jiang等, 2016)。簡(jiǎn)而言之,最初使用表面等離振子共振和熒光偏振測(cè)定評(píng)估一系列截短的NRF2肽作為PPI的直接抑制劑(Hu等,2013)。抑制能力最小的肽序列為L(zhǎng)DE-ETGE-FL的9-mer序列(Chen等, 2011;Inoyama等,2012)。與此同時(shí),Wells和合作者(Hancock等,2013)使用噬菌體展示文庫(kù)結(jié)合高通量熒光偏振測(cè)定法搜索新推定的肽配體。他們發(fā)現(xiàn),與單獨(dú)的天然肽相比,基于NRF2和SQSTM1的ETGE基序的雜合肽對(duì)KEAP1具有更高的結(jié)合活性。為了促進(jìn)細(xì)胞攝取,設(shè)計(jì)一種肽,其中ETGE基序與HIV-Tat蛋白的細(xì)胞轉(zhuǎn)導(dǎo)結(jié)構(gòu)域和鈣蛋白酶的切割序列(DEETGE-Cal-Tat)融合。該肽在腦缺血的小鼠模型中顯示出神經(jīng)保護(hù)和認(rèn)知保護(hù)作用(Tu等,2015)。

已經(jīng)描述了五個(gè)PPI抑制劑家族:四氫異喹啉(Jnoff等,2014; Richardson等,2015),硫嘧啶(Marcotte等,2013),萘(Jiang等,2014b),咔唑酮(Ranjan等,2014)和尿素衍生物(Sato等,2013)。表3匯總了最近針對(duì)這些小分子的專利。 盡管這些化合物非常有前途,但仍需要證明它們對(duì)KEAP1/NRF2相互作用具有選擇性,因?yàn)镵EAP1也至少靶向Bcl2和IKK(Kim等,2010a; Hast等,2013; Cazanave等,2014)。
從可用文庫(kù)中索引的大量化合物中,化合物L(fēng)H601,苯磺?;奏ね?,N-苯基-苯磺酰胺和一系列1,4-二苯基-1,2,3-三唑可能是KEAP1抑制PPI非常適合的候選者(Hu等,2013; Jnoff等,2014; Bertrand等,2015; Wen等,2015; Nasiri等,2016)。這些研究詳細(xì)描述了與KEAP1的原子相互作用、親和力和結(jié)合的熱力學(xué)參數(shù)。這些化合物的治療功效將在未來(lái)的工作中進(jìn)行分析,其中應(yīng)該解決安全性,效力和血腦屏障滲透性。
 
表3. 選擇的NRF2誘導(dǎo)劑充當(dāng)NRF2-KEAP1蛋白質(zhì) - 蛋白質(zhì)相互作用抑制劑

 
 
 

C. 用于NRF2激活的Keap1以外的藥物靶

蛋白激酶GSK-3磷酸化NRF2的DSGIS序列中的兩個(gè)絲氨酸殘基以產(chǎn)生一個(gè)磷酸化依賴性降解基序或磷酸化二核(圖2)。該磷酸二核被E3連接酶適配子β-TrCP識(shí)別,導(dǎo)致NRF2的泛素依賴性蛋白酶體降解。因此,GSK-3抑制劑應(yīng)通過(guò)阻止這種磷酸二核的產(chǎn)生來(lái)阻止NRF2降解。GSK-3是AD和其他病理表型中的重要激酶。它使細(xì)胞骨架蛋白tau磷酸化,促進(jìn)神經(jīng)原纖維纏結(jié)的形成,神經(jīng)原纖維纏結(jié)是病理性細(xì)胞內(nèi)聚集體,其干擾軸突運(yùn)輸并導(dǎo)致神經(jīng)元死亡(Silva等,2014)。因此,推測(cè)GSK-3抑制可能具有防止神經(jīng)原纖維纏結(jié)形成和NRF2降解的雙重益處。不幸的是,大多數(shù)用于開(kāi)發(fā)GSK-3抑制劑的管道由于無(wú)效而已經(jīng)停止,盡管在大多數(shù)情況下沒(méi)有很好的證據(jù)表明靶標(biāo)調(diào)節(jié)(Palomo和Martinez,2017)。

從概念上講,β-TrCP-磷酸化NRF2相互作用的抑制劑也應(yīng)該導(dǎo)致NRF2活化,因?yàn)樗鼈儜?yīng)該破壞NRF2降解的這一分支(圖2)。β-TrCP的β-螺旋和含有NRF2磷酸二核的肽之間的分子相互作用已經(jīng)通過(guò)NMR解決(Rada等,2012)。正如KEAP1/EGTE所發(fā)生的那樣,最相關(guān)的氨基酸似乎是β-TrCP的幾個(gè)精氨酸殘基,其與DpSGIpS基序的兩個(gè)磷酸絲氨酸相互作用。然而,能夠抑制β-TrCP-磷酸化NRF2相互作用的小分子的發(fā)現(xiàn)仍在進(jìn)行中。
已經(jīng)開(kāi)發(fā)了其他策略來(lái)抑制NRF2抑制因子BACH1,這是一種bZip蛋白,可與MAF蛋白形成異二聚體并阻斷ARE基因的表達(dá)。已經(jīng)在體外描述了HPP-4382化合物對(duì)BACH1的有效抑制(Attucks等,2014),但是,在完整的臨床試驗(yàn)之前,必須在體內(nèi)證明HPP-4382的安全性和功效特征??紤]到其他途徑也可能影響NRF2的活性,我們有理由推測(cè),組合方法將是激活該轉(zhuǎn)錄因子的最佳途徑。

D. NRF2抑制劑

NRF2在構(gòu)成性和高度過(guò)表達(dá)時(shí)具有與其致癌活性相關(guān)的“陰暗面”。因此,已提出NRF2抑制作為使癌細(xì)胞對(duì)化學(xué)治療藥物或放射療法敏感的機(jī)制(Milkovic等,2017)??梢栽O(shè)想兩種策略用小分子抑制NRF2:破壞NRF2和MAFs之間的bZip相互作用的PPI抑制劑,以及阻斷NRF2-MAF與ARE結(jié)合的DNA-蛋白質(zhì)相互作用抑制劑(圖9C)。這兩種策略都受到了阻礙,因?yàn)檫@類藥物需要克服蛋白質(zhì)-蛋白質(zhì)之間以及蛋白質(zhì)-DNA界面(在較小程度上)之間的大量自由能。 然而,已發(fā)現(xiàn)其他bZip轉(zhuǎn)錄因子如STAT3-STAT3,MYC-MAX和JUNFOS(Yap等,2011),并且正在描述NRF2-MAF的新的小分子。例如,malabaricone-A是一種促氧化合物,通過(guò)靶向NRF2克服了白血病抗性(Manna等,2015)。抗壞血酸(維生素C),一種著名的ROS清除劑,被發(fā)現(xiàn)通過(guò)降低NRF2/ARE復(fù)合物水平,降低GCLC基因的表達(dá),降低GSH水平,來(lái)增強(qiáng)伊馬替尼耐藥癌細(xì)胞的敏感性(Tarumoto等,2004)。全反式維甲酸是NRF2抑制劑的另一個(gè)實(shí)例,其在體外和體內(nèi)顯著降低有效的親電NRF2誘導(dǎo)物對(duì)NRF2的活化。它激活視黃酸受體α,其與NRF2形成復(fù)合物,因此阻礙轉(zhuǎn)錄因子與ARE基因的結(jié)合(Wang等,2007)。

天然產(chǎn)物如鴉膽子苦醇(Ren等,2011; Olayanju等,2015),赭曲霉毒素A(Tarumoto等,2004; Limonciel和Jennings,2014)和葫蘆巴堿(Arlt等,2013)也有被發(fā)現(xiàn)抑制NRF2。然而,他們的作用機(jī)制還沒(méi)有完全明白。事實(shí)上,與現(xiàn)有化合物相關(guān)的一個(gè)重要問(wèn)題是它們可能具有的深遠(yuǎn)的脫靶效應(yīng)。例如,最近發(fā)現(xiàn)鴉膽子苦醇對(duì)蛋白質(zhì)合成具有普遍和非特異性抑制作用,導(dǎo)致NRF2水平下降,而且許多其他快速轉(zhuǎn)換蛋白下降,因此最近不鼓勵(lì)使用鴉膽子苦醇(Harder et al。,2017))。類似地,獸醫(yī)實(shí)踐中使用的抗原蟲(chóng)劑鹵蟲(chóng)酮通過(guò)抑制NRF2積累來(lái)增強(qiáng)癌細(xì)胞的化學(xué)敏感性,但這種效應(yīng)似乎是間接的,它通過(guò)抑制核糖基轉(zhuǎn)移RNA的合成,這是NRF2以及許多其他含脯氨酸的蛋白質(zhì)的核糖體轉(zhuǎn)化所強(qiáng)烈需要的(Tsuchida等,2017)。

最近報(bào)道了一種識(shí)別選擇性NRF2抑制劑的新方法,即使用小分子抑制劑的高通量定量篩選(Singh等, 2016)。作者確定了一種名為ML385的一流化合物,它最有可能阻止NRF2與其他bZip共激活因子的結(jié)合。該化合物阻斷NRF2轉(zhuǎn)錄活性并使KEAP1缺陷細(xì)胞對(duì)卡鉑和其他化學(xué)治療藥物敏感。需要進(jìn)一步的研究來(lái)確認(rèn)ML385是否對(duì)NRF2具有選擇性,或者它是否也抑制其他bZip轉(zhuǎn)錄因子。

鑒于NRF2在多種腫瘤病理表型中具有良好的全身效應(yīng),用小分子抑制劑特異性靶向NRF2似乎提供了一種良好的臨床途徑。然而,有必要確定用NRF2抑制劑治療癌癥是否會(huì)增加NRF2疾病組中的其他病理表型的風(fēng)險(xiǎn)。


E. 藥物新用代替新藥物的發(fā)現(xiàn)與開(kāi)發(fā)

如前所述,許多化合物正在開(kāi)發(fā)中,為與NRF2疾病組相關(guān)的病理表型提供益處。另一種方法是給已經(jīng)在臨床中用于某種病理機(jī)制的藥物一個(gè)新的用途,用于治療與NRF2有關(guān)的其他病理機(jī)制。本節(jié)根據(jù)一些常用藥物在NRF2調(diào)控中的作用,為其重新定位提供依據(jù)。

二甲雙胍是T2DM的一線單藥治療。根據(jù)圖6,它為與葡萄糖代謝相關(guān)的病理表型的NRF2亞群提供治療益處。事實(shí)上,SFN可降低肝臟葡萄糖的產(chǎn)生,并改善T2DM患者的血糖控制(Axelsson等,2017)。有趣的是,一些證據(jù)表明,二甲雙胍可能有效預(yù)防NRF2疾病組中的其他非糖尿病病理表型,包括心血管疾?。∟esti和Natali,2017),呼吸系統(tǒng)疾?。⊿ato等,2016),消化系統(tǒng)(Bauer和Duca,2016),神經(jīng)退行性疾?。∕arkowicz-Piasecka等,2017),自身免疫(Schuiveling等,2017)和腫瘤(Heckman-Stoddard等,2017)疾病。二甲雙胍的作用機(jī)制尚不完全清楚,但它涉及抑制線粒體復(fù)合物I,從而增加AMP/ATP比值(El-Mir等,2000; Owen等,2000)并導(dǎo)致能量傳感器AMPK的激活(Hardie,2004; Rena等,2017)。重要的是,AMPK激活NRF2(Wang等,2017a; Zhao等,2017),并且該軸的藥理學(xué)靶向可減輕中風(fēng)后的炎癥(Wang等,2017c)或內(nèi)毒素暴露(Ci等,2017; Lv等,2017)。事實(shí)上,二甲雙胍以AMPK依賴的方式激活NRF2,從而抑制臨床前嚙齒動(dòng)物短暫性全腦缺血模型的炎癥反應(yīng)(Ashabi等, 2015;Kaisar等,2017)。葡萄糖代謝和炎癥可能不是二甲雙胍/NRF2作用的唯一病理機(jī)制。實(shí)際上,已經(jīng)描述了氧化還原的其他有益效果(Kocer等,2014; Kelleni等,2015)和蛋白質(zhì)穩(wěn)態(tài)(Tsai等,2017)。

他汀類藥物可預(yù)防和減少心血管病變表型。除了降脂作用外,他汀類藥物似乎可以預(yù)防與NRF2網(wǎng)絡(luò)相關(guān)的病理機(jī)制,如炎癥(Pantan等,2016; Wu等,2016a; Hwang等,2017)和病理性ROS形成( Abdanipour等,2014)。它們是3-羥基-3-甲基-戊二酰-CoA還原酶的競(jìng)爭(zhēng)性抑制劑,其催化膽固醇合成中的限速反應(yīng)。其他多效性影響包括轉(zhuǎn)錄因子Krüppel樣因子2的上調(diào),其在肝硬化進(jìn)展期間早期誘導(dǎo),并減輕肝血管功能障礙的發(fā)展(Marrone等,2015)。最近的證據(jù)表明,至少一些他汀類藥物會(huì)激活NRF2。在分離的肝細(xì)胞中進(jìn)行的一項(xiàng)研究中,高濃度的辛伐他汀激活了NRF2,可能作為一種防御機(jī)制(Cho等,2013)。用洛伐他汀預(yù)處理神經(jīng)干細(xì)胞激活NRF2途徑并引發(fā)針對(duì)過(guò)氧化氫誘導(dǎo)的細(xì)胞死亡的保護(hù)(Abdanipour等,2014)。在肝硬化中,辛伐他汀激活由Krüppel樣因子2和NRF2形成的軸,以減少星狀細(xì)胞的氧化負(fù)荷和炎癥反應(yīng),改善肝纖維化,內(nèi)皮功能障礙和門靜脈高壓。辛伐他汀激活NRF2的機(jī)制尚不完全清楚,但似乎涉及NRF2相互作用組中發(fā)現(xiàn)的元素,如絲裂原活化蛋白激酶、PI3K/AKT途徑(Jang等,2016)和GSK-3(Lin等,2016)。

圖4的NRF2相互作用組可以推斷出藥物新用的其他病例,特別是信號(hào)激酶。如圖2C所示,GSK-3磷酸化NRF2的Neh6結(jié)構(gòu)域,導(dǎo)致β-TrCP的識(shí)別和進(jìn)一步泛素依賴性蛋白酶體降解。GSK-3在沒(méi)有刺激的情況下是活躍的,而在激活A(yù)KT和其他激酶的信號(hào)級(jí)聯(lián)導(dǎo)致GSK-3在其N端偽底物域磷酸化時(shí)是不活躍的。因此,已知靶向信號(hào)激酶的藥物可用于上調(diào)(GSK-3抑制劑)或下調(diào)(PI3K/AKT抑制劑)NRF2特征。

GSK-3參與NRF2疾病組中發(fā)現(xiàn)的至少一些病理表型,例如糖尿病和神經(jīng)退行性疾?。˙eurel等,2015; Maqbool和Hoda,2017)。從天然和合成來(lái)源發(fā)現(xiàn)了廣泛的GSK-3抑制劑(Khan等,2017),但將GSK-3抑制劑重新利用來(lái)增加NRF2活性的最佳證據(jù)可能源于臨床使用鋰作為情緒穩(wěn)定劑(Chiu等,2013)。雖然此時(shí)在NRF2疾病組中未發(fā)現(xiàn)雙相情感障礙和抑郁,但很明顯它們表現(xiàn)出神經(jīng)炎癥和退行性病變表型,至少在小鼠模型中暗示NRF2失調(diào)(Martin-de-Saavedra等,2013; Freitas等,2016; Yao等,2016)。

NRF2相互作用組也為阻斷信號(hào)激酶從而激活GSK-3的癌癥藥物抑制NRF2提供了一個(gè)理由。例如,表皮生長(zhǎng)因子受體抑制劑厄洛替尼導(dǎo)致NRF2抑制,參與非小細(xì)胞肺癌中的腫瘤細(xì)胞感覺(jué)(Xiaobo等,2016)。用于治療肝細(xì)胞癌的激酶級(jí)聯(lián)抑制劑索拉非尼也導(dǎo)致NRF2及其下游靶標(biāo)金屬硫蛋白-1(Houessinon等,2016)和亞甲基四氫葉酸脫氫酶1的抑制(Lee等人,2017)。

最后,在兩項(xiàng)相關(guān)研究中,迄今為止一直在尋找可能影響NRF2調(diào)節(jié)的再利用藥物。使用基于熒光相關(guān)光譜的篩選系統(tǒng),1633種藥物中的兩種顯著增加HepG2細(xì)胞中的NRF2蛋白水平:葉綠酸和bonaphton(Yoshizaki等,2017)。在另一項(xiàng)研究中,分析了連接圖數(shù)據(jù)庫(kù),其包含用1309種試劑處理的人細(xì)胞系的基因表達(dá)譜(Lamb等,2006; Iorio等,2010)(Zhang等,2017),通過(guò)激活NRF2以尋找有潛力的氧化還原調(diào)節(jié)劑(Xiong等,2014)。該研究發(fā)現(xiàn)阿司咪唑是一種有效的抗組胺藥,用于過(guò)敏性疾病,是一種新型的NRF2激活劑。
 

VI. 生物標(biāo)志物作為NRF2特征參與監(jiān)測(cè)目標(biāo)

由于ROS的半衰期短,在毫秒或納秒的范圍內(nèi),對(duì)患者或群體研究中的氧化還原狀態(tài)的評(píng)估受到阻礙(Ghezzi等,2017b)。因此,病理性ROS形成的生物標(biāo)志物基于測(cè)量ROS留下的痕跡,ROS通常是細(xì)胞分子的末端氧化產(chǎn)物,其中許多是非特異性的(Frijhoff等,2015)。相反,NRF2的激活和其靶基因的后續(xù)表達(dá)是對(duì)生物體對(duì)病理性ROS形成的總暴露的間接但可靠的估計(jì)。由于NRF2激活是對(duì)環(huán)境應(yīng)激源的一種成熟的細(xì)胞反應(yīng),所以它被認(rèn)為是暴露于異生素的生物標(biāo)志物。在肺部,通過(guò)對(duì)多個(gè)轉(zhuǎn)錄研究的數(shù)據(jù)挖掘,并結(jié)合獨(dú)創(chuàng)性通路分析,報(bào)道了NRF2信號(hào)在健康吸煙者中上調(diào),因此表明NRF2調(diào)控的抗氧化基因在預(yù)防煙草煙霧的毒性作用中發(fā)揮核心作用(Comandini等, 2010)。類似地,NRF2調(diào)控的一種酶NQO1在過(guò)量服用對(duì)乙酰氨基酚患者的肝組織中含量是正常水平的15倍(Aleksunes等, 2006)。疾病與營(yíng)養(yǎng)之間的關(guān)聯(lián)通?;诓豢煽康淖晕覉?bào)告(Archer等,2015)。通過(guò)激活NRF2來(lái)測(cè)量對(duì)營(yíng)養(yǎng)素響應(yīng)的生物標(biāo)志物,據(jù)稱具有有益效果,這可以提供一種可靠的方法來(lái)驗(yàn)證營(yíng)養(yǎng)研究。但是,這種可能性仍未得到探索。
與NRF2轉(zhuǎn)錄相關(guān)的變化可用作監(jiān)測(cè)藥物功效的生物標(biāo)志物,所述藥物旨在通過(guò)黃嘌呤氧化酶和NADPH氧化酶抑制劑減少病理性ROS形成。同樣,可以通過(guò)定義全局蛋白和基因表達(dá)譜來(lái)檢測(cè)和監(jiān)測(cè)環(huán)境化學(xué)品的暴露情況(Ghezzi等,2017a)。這種方法類似于第一階段藥物代謝酶的使用,其中細(xì)胞色素P450是各種異種生物通過(guò)Ah受體誘導(dǎo)的,可以作為海洋污染的指標(biāo)(Cajaraville等, 2000)。12周內(nèi)每日口服富馬酸酯與銀屑病患者皮膚中NRF2靶基因表達(dá)增加有關(guān)(Onderdijk等,2014)。同樣,在接受每日劑量CDDO-Me治療3周的癌癥患者外周血單核細(xì)胞中,NQO1的mRNA水平增加了5倍(Hong等, 2012)。

使用NRF2的轉(zhuǎn)錄特征作為生物標(biāo)記需要很好地了解ARE基因活化所涉及的機(jī)制,因?yàn)榇蠖鄶?shù)NRF2靶標(biāo)受另外的轉(zhuǎn)錄因子調(diào)節(jié)。因此,分析幾種ARE基因的表達(dá)很重要。例如,一項(xiàng)使用NRF2作為肺鱗癌治療反應(yīng)預(yù)測(cè)因子的研究提出使用28個(gè)基因來(lái)定義NRF2激活譜(Cescon等, 2015)。
 

VII. 結(jié)論

系統(tǒng)醫(yī)學(xué)和網(wǎng)絡(luò)藥理學(xué)共同強(qiáng)調(diào)了NRF2在慢性疾病中起基礎(chǔ)性作用的一組病理表型。這些疾病具有共同的機(jī)制,包括氧化,炎癥和代謝改變。 本研究中提出的NRF2相互作用組,NRF2疾病組和NRF2藥物組仍處于早期發(fā)展階段,但它們代表了將NRF2構(gòu)建為一種常見(jiàn)的治療和系統(tǒng)醫(yī)學(xué)方法的首次嘗試。 即將完善的現(xiàn)有數(shù)據(jù)庫(kù)和即將公布的臨床結(jié)果數(shù)據(jù)將進(jìn)一步提高這一新方法的準(zhǔn)確性,這一新方法是以藥理學(xué)和機(jī)制為基礎(chǔ)的藥物新用。本文為藥物發(fā)現(xiàn)激活或抑制NRF2的綜合策略提供了路線圖,并強(qiáng)調(diào)需要為新藥的開(kāi)發(fā)或針對(duì)NRF2作為慢性病常見(jiàn)成分的藥物的重新利用的轉(zhuǎn)化而努力。
 

Ⅷ. 參考文獻(xiàn)

Abdanipour A, Tiraihi T, Noori-Zadeh A, Majdi A, and Gosaili R (2014) Evaluation of lovastatin effects on expression of anti-apoptotic Nrf2 and PGC-1a genes in neural stem cells treated with hydrogen peroxide. Mol Neurobiol 49:1364–1372.
Abed DA, Goldstein M, Albanyan H, Jin H, and Hu L (2015) Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B 5:285–299.
Aleksunes LM, Goedken M, and Manautou JE (2006) Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury. World J Gastroenterol 12: 1937–1940.
Aleksunes LM and Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35:459–473.
Al-Huseini LM, Aw Yeang HX, Sethu S, Alhumeed N, Hamdam JM, Tingle Y, Djouhri L, Kitteringham N, Park BK, Goldring CE, et al. (2013) Nuclear factorerythroid 2 (NF-E2) p45-related factor-2 (Nrf2) modulates dendritic cell immune function through regulation of p38 MAPK-cAMP-responsive element binding protein/activating transcription factor 1 signaling. J Biol Chem 288:22281–22288.
Al-Jaderi Z and Maghazachi AA (2015) Vitamin D3 and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis. Toxins (Basel) 7: 4730–4744.
Altmeyer PJ, Matthes U, Pawlak F, Hoffmann K, Frosch PJ, Ruppert P, Wassilew SW, Horn T, Kreysel HW, Lutz G, et al. (1994) Antipsoriatic effect of fumaric acid derivatives: results of a multicenter double-blind study in 100 patients. J Am Acad Dermatol 30:977–981.
Archer E, Pavela G, and Lavie CJ (2015) The inadmissibility of what we eat in America and NHANES dietary data in nutrition and obesity research and the scientific formulation of national dietary guidelines. Mayo Clin Proc 90:911–926.
Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, Fujita H, Hasegawa S, Takagi T, Wang FY, et al. (2007) The relationship between Helicobacter pylori infection and promoter polymorphism of the Nrf2 gene in chronic gastritis. Int J Mol Med 19:143–148.
 Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, Fujita H, Yoshioka D, Okubo M, Hirata I, et al. (2008a) Nrf2 gene promoter polymorphism and gastric carcinogenesis. Hepatogastroenterology 55:750–754.
Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, Kamiya Y, Fujita H, Yoshioka D, Okubo M, Sakata M, et al. (2008b) Nrf2 gene promoter polymorphism is associated with ulcerative colitis in a Japanese population. Hepatogastroenterology 55:394–397.
Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, Schreiber S, and Schäfer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32: 4825–4835.
Artaud-Macari E, Goven D, Brayer S, Hamimi A, Besnard V, Marchal-Somme J, Ali ZE, Crestani B, Kerdine-Römer S, Boutten A, et al. (2013) Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid Redox Signal 18:66–79.
Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, and Sarkaki A (2015) Pretreatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 30:747–754.
Attucks OC, Jasmer KJ, Hannink M, Kassis J, Zhong Z, Gupta S, Victory SF, Guzel M, Polisetti DR, Andrews R, et al. (2014) Induction of heme oxygenase I (HMOX1) by HPP-4382: a novel modulator of Bach1 activity. PLoS One 9:e101044.
Aviello G and Knaus UG (2017) ROS in gastrointestinal inflammation: rescue or sabotage? Br J Pharmacol 174:1704–1718.
Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JMJ, Wollheim CB, Wierup N, et al. (2017) Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med 9:1–12.
Bahadoran Z, Mirmiran P, Hosseinpanah F, Rajab A, Asghari G, and Azizi F (2012) Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDLcholesterol ratio in type 2 diabetic patients: a randomized double-blind placebocontrolled clinical trial. Diabetes Res Clin Pract 96:348–354.
Baillie JK, Arner E, Daub C, De Hoon M, Itoh M, Kawaji H, Lassmann T, Carninci P, Forrest AR, Hayashizaki Y, et al.; FANTOM Consortium (2017) Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genet 13:e1006641.
Baird L and Dinkova-Kostova AT (2013) Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells. Biochem Biophys Res Commun 433:58–65. Banning A and Brigelius-Flohé R (2005) NF-kappaB, Nrf2, and HO-1 interplay in redox-regulated VCAM-1 expression. Antioxid Redox Signal 7:889–899.
Barabási AL, Gulbahce N, and Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68.
Batthyany CI and Lopez GV (2015) Nitroalkene Tocopherols and Analogs Thereof for Use in the Treatment and Prevention of Inflammation Related Conditions, Complexa, Radnor, PA. Bauer PV and Duca FA (2016) Targeting the gastrointestinal tract to treat type 2 diabetes. J Endocrinol 230:R95–R113.
Bergström P, von Otter M, Nilsson S, Nilsson AC, Nilsson M, Andersen PM, Hammarsten O, and Zetterberg H (2014) Association of NFE2L2 and KEAP1 haplotypes with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:130–137.
Bertrand HC, Schaap M, Baird L, Georgakopoulos ND, Fowkes A, Thiollier C, Kachi H, Dinkova-Kostova AT, and Wells G (2015) Design, synthesis, and evaluation of triazole derivatives that induce Nrf2 dependent gene products and inhibit the Keap1-Nrf2 protein-protein interaction. J Med Chem 58:7186–7194.
Beurel E, Grieco SF, and Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. Bhatt JK, Thomas S, and Nanjan MJ (2012) Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res 32:537–541.
Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, and Cravatt BF (2016) Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal 9:rs10.
Bolaños JP (2016) Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 139 (Suppl 2):115–125.
Bourdonnay E, Morzadec C, Fardel O, and Vernhet L (2009) Redox-sensitive regulation of gene expression in human primary macrophages exposed to inorganic arsenic. J Cell Biochem 107:537–547.
Bowie A and O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23.
Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, Mikolás E, Szijártó IA, Mérei A, Halmai R, et al. (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 106:383–389.
Brennan MS, Matos MF, Richter KE, Li B, and Scannevin RH (2017) The NRF2 transcriptional target, OSGIN1, contributes to monomethyl fumarate-mediated cytoprotection in human astrocytes. Sci Rep 7:42054.
Brüne B, Dehne N, Grossmann N, Jung M, Namgaladze D, Schmid T, von Knethen A, and Weigert A (2013) Redox control of inflammation in macrophages. Antioxid Redox Signal 19:595–637.
Buendia I, Gómez-Rangel V, González-Lafuente L, Parada E, León R, Gameiro I, Michalska P, Laudon M, Egea J, and López MG (2015a) Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. Neuropharmacology 99:187–195.
Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, and León R (2016) Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 157:84–104.
Buendia I, Navarro E, Michalska P, Gameiro I, Egea J, Abril S, López A, GonzálezLafuente L, López MG, and León R (2015b) New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med Chem 7:1961–1969.
Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, and Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247: 295–311.
Cazanave SC, Wang X, Zhou H, Rahmani M, Grant S, Durrant DE, Klaassen CD, Yamamoto M, and Sanyal AJ (2014) Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ 21: 1303–1312.
Cescon DW, She D, Sakashita S, Zhu CQ, Pintilie M, Shepherd FA, and Tsao MS (2015) NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma. Clin Cancer Res 21:2499–2505.
Chen H, Assmann JC, Krenz A, Rahman M, Grimm M, Karsten CM, Köhl J, Offermanns S, Wettschureck N, and Schwaninger M (2014) Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE. J Clin Invest 124:2188–2192.
Chen J, Yu Y, Ji T, Ma R, Chen M, Li G, Li F, Ding Q, Kang Q, Huang D, et al. (2016) Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Med 5:2678–2687.
Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, and Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673.
Chen Y, Inoyama D, Kong AN, Beamer LJ, and Hu L (2011) Kinetic analyses of Keap1-Nrf2 interaction and determination of the minimal Nrf2 peptide sequence required for Keap1 binding using surface plasmon resonance.
Chem Biol Drug Des 78:1014–1021. Chen YC, Wu YR, Wu YC, Lee-Chen GJ, and Chen CM (2013) Genetic analysis of NFE2L2 promoter variation in Taiwanese Parkinson’s disease. Parkinsonism Relat Disord 19:247–250.
Chin MP, Reisman SA, Bakris GL, O’Grady M, Linde PG, McCullough PA, Packham D, Vaziri ND, Ward KW, Warnock DG, et al. (2014) Mechanisms contributing to adverse cardiovascular events in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. Am J Nephrol 39: 499–508.
Chiu CT, Wang Z, Hunsberger JG, and Chuang DM (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65:105–142.
Cho HY and Kleeberger SR (2010) Nrf2 protects against airway disorders. Toxicol Appl Pharmacol 244:43–56.
Cho HY, Marzec J, and Kleeberger SR (2015) Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med 88 (Pt B):362–372.
Cho HY, Reddy SP, Yamamoto M, and Kleeberger SR (2004) The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J 18:1258–1260.
Cho YE, Moon PG, Lee JE, Singh TS, Kang W, Lee HC, Lee MH, Kim SH, and Baek MC (2013) Integrative analysis of proteomic and transcriptomic data for identification of pathways related to simvastatin-induced hepatotoxicity. Proteomics 13: 1257–1275.
Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, and Hayes JD (2013) Nrf2 is controlled by two distinct b-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32:3765–3781.
Christou H, Morita T, Hsieh CM, Koike H, Arkonac B, Perrella MA, and Kourembanas S (2000) Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 86: 1224–1229.
Chuengsamarn S, Rattanamongkolgul S, Phonrat B, Tungtrongchitr R, and Jirawatnotai S (2014) Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 25:144–150.
Ci X, Zhou J, Lv H, Yu Q, Peng L, and Hua S (2017) Betulin exhibits antiinflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death Dis 8:e2798.
Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, Callahan JF, Carr R, Concha N, Kerns JK, et al. (2014) Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One 9:e98896.
Comandini A, Marzano V, Curradi G, Federici G, Urbani A, and Saltini C (2010) Markers of anti-oxidant response in tobacco smoke exposed subjects: a data-mining review. Pulm Pharmacol Ther 23:482–492.
Córdova EJ, Velázquez-Cruz R, Centeno F, Baca V, and Orozco L (2010) The NRF2 gene variant, -653G/A, is associated with nephritis in childhood-onset systemic lupus erythematosus. Lupus 19:1237–1242.
Croze E, Yamaguchi KD, Knappertz V, Reder AT, and Salamon H (2013) Interferonbeta-1b-induced short- and long-term signatures of treatment activity in multiple sclerosis. Pharmacogenomics J 13:443–451.
Cuadrado A (2015) Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/b-TrCP. Free Radic Biol Med 88 (Pt B):147–157.
Cuadrado A, Martín-Moldes Z, Ye J, and Lastres-Becker I (2014) Transcription factors NRF2 and NF-kB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289:15244–15258.
Cuadrado A, Moreno-Murciano P, and Pedraza-Chaverri J (2009) The transcription factor Nrf2 as a new therapeutic target in Parkinson’s disease. Expert Opin Ther Targets 13:319–329.
Cui Y, Wang Q, Li X, and Zhang X (2013) Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation. Redox Biol 1:433–440.
Datta S, Kundu S, Ghosh P, De S, Ghosh A, and Chatterjee M (2014) Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 33:1557–1564.
de la Vega MR, Dodson M, Gross C, Manzour H, Lantz RC, Chapman E, Wang T, Black SM, Garcia JG, and Zhang DD (2016) Role of Nrf2 and autophagy in acute lung injury. Curr Pharmacol Rep 2:91–101.
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, et al. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109.
de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers Heerspink HJ, et al.; BEACON Trial Investigators (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369:2492–2503.
Diotallevi M, Checconi P, Palamara AT, Celestino I, Coppo L, Holmgren A, Abbas K, Peyrot F, Mengozzi M, and Ghezzi P (2017) Glutathione fine-tunes the innate immune response toward antiviral pathways in a macrophage cell line independently of its antioxidant properties. Front Immunol 8:1239.
Duran CG, Burbank AJ, Mills KH, Duckworth HR, Aleman MM, Kesic MJ, Peden DB, Pan Y, Zhou H, and Hernandez ML (2016) A proof-of-concept clinical study examining the NRF2 activator sulforaphane against neutrophilic airway inflammation. Respir Res 17:89.
Eades G, Yang M, Yao Y, Zhang Y, and Zhou Q (2011) miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 286: 40725–40733.
Egea J, Buendia I, Parada E, Navarro E, Rada P, Cuadrado A, López MG, García AG, and León R (2015) Melatonin-sulforaphane hybrid ITH12674 induces neuroprotection in oxidative stress conditions by a ‘drug-prodrug’ mechanism of action. Br J Pharmacol 172:1807–1821.
Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C, Gold R, and Linker RA (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS One 6:e16172.
El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, and Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228.
Eminel S, Jin N, Rostami M, Dibbert S, Mrowietz U, and Suhrkamp I (2017) Dimethyl- and monomethylfumarate regulate indoleamine 2,3-dioxygenase (IDO) activity in human immune cells. Exp Dermatol 26:685–690.
Emmink BL, Verheem A, Van Houdt WJ, Steller EJ, Govaert KM, Pham TV, Piersma SR, Borel Rinkes IH, Jimenez CR, and Kranenburg O (2013) The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteomics 91:84–96.
Evans MD, Cooke MS, Akil M, Samanta A, and Lunec J (2000) Aberrant processing of oxidative DNA damage in systemic lupus erythematosus. Biochem Biophys Res Commun 273:894–898.
Fagone P, Patti F, Mangano K, Mammana S, Coco M, Touil-Boukoffa C, Chikovani T, Di Marco R, and Nicoletti F (2013) Heme oxygenase-1 expression in peripheral blood mononuclear cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 261:82–86.
Finkelstein R, Fraser RS, Ghezzo H, and Cosio MG (1995) Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med 152:1666–1672.
Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, et al.; CONFIRM Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367:1087–1097.
Freitas AE, Egea J, Buendia I, Gómez-Rangel V, Parada E, Navarro E, Casas AI, Wojnicz A, Ortiz JA, Cuadrado A, et al. (2016) Agmatine, by improving neuroplasticity markers and inducing Nrf2, prevents corticosterone-induced depressivelike behavior in mice. Mol Neurobiol 53:3030–3045.
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, et al. (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23:1144–1170.
Frostegård J, Svenungsson E, Wu R, Gunnarsson I, Lundberg IE, Klareskog L, Hörkkö S, and Witztum JL (2005) Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 52:192–200.
Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, Zhang H, Solit DB, Taylor BS, Schultz N, et al. (2017) 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med 9:4.
Ghanim H, Sia CL, Korzeniewski K, Lohano T, Abuaysheh S, Marumganti A, Chaudhuri A, and Dandona P (2011) A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, highcarbohydrate meal. J Clin Endocrinol Metab 96:1409–1414.
Ghezzi P, Floridi L, Boraschi D, Cuadrado A, Manda G, Levic S, D’Acquisto F, Hamilton A, Athersuch TJ, and Selley L (2017a) Oxidative stress and inflammation induced by environmental and psychological stressors: a biomarker perspective. Antioxid Redox Signal [published ahead of print].
Ghezzi P, Jaquet V, Marcucci F, and Schmidt HHHW (2017b) The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol 174:1784–1796.
Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, et al. (2011) Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 208:2291–2303.
Gillard GO, Collette B, Anderson J, Chao J, Scannevin RH, Huss DJ, and Fontenot JD (2015) DMF, but not other fumarates, inhibits NF-kB activity in vitro in an Nrf2-independent manner. J Neuroimmunol 283:74–85.
Goh KI, Cusick ME, Valle D, Childs B, Vidal M, and Barabási AL (2007) The human disease network. Proc Natl Acad Sci USA 104:8685–8690.
Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, et al.; DEFINE Study Investigators (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107.
Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ, and Martín V (2017) The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS One 12:e0177549.
Goven D, Boutten A, Leçon-Malas V, Marchal-Sommé J, Amara N, Crestani B, Fournier M, Lesèche G, Soler P, Boczkowski J, et al. (2008) Altered Nrf2/Keap1- Bach1 equilibrium in pulmonary emphysema. Thorax 63:916–924.
Griendling KK and FitzGerald GA (2003a) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108: 1912–1916.
Griendling KK and FitzGerald GA (2003b) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108:2034–2040.
Guan CP, Zhou MN, Xu AE, Kang KF, Liu JF, Wei XD, Li YW, Zhao DK, and Hong WS (2008) The susceptibility to vitiligo is associated with NF-E2-related factor2 (Nrf2) gene polymorphisms: a study on Chinese Han population. Exp Dermatol 17: 1059–1062.
Guney E, Menche J, Vidal M, and Barábasi AL (2016) Network-based in silico drug efficacy screening. Nat Commun 7:10331.
Guney E and Oliva B (2014) Analysis of the robustness of network-based diseasegene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes. PLoS One 9:e94686.
Han SJ, Ahn Y, Park I, Zhang Y, Kim I, Kim HW, Ku CS, Chay KO, Yang SY, Ahn BW, et al. (2015) Assay of the redox state of the tumor suppressor PTEN by mobility shift. Methods 77–78:58–62.
Hancock R, Schaap M, Pfister H, and Wells G (2013) Peptide inhibitors of the Keap1- Nrf2 protein-protein interaction with improved binding and cellular activity. Org Biomol Chem 11:3553–3557.
Harder B, Tian W, La Clair JJ, Tan AC, Ooi A, Chapman E, and Zhang DD (2017) Brusatol overcomes chemoresistance through inhibition of protein translation. Mol Carcinog 56:1493–1500.
Hardie DG (2004) The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 117:5479–5487.
Harrison D, Griendling KK, Landmesser U, Hornig B, and Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A.
Hart PC, Ratti BA, Mao M, Ansenberger-Fricano K, Shajahan-Haq AN, Tyner AL, Minshall RD, and Bonini MG (2016) Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis. Oncotarget 7: 308–322.
Harvey CJ, Thimmulappa RK, Sethi S, Kong X, Yarmus L, Brown RH, Feller-Kopman D, Wise R, and Biswal S (2011) Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 3:78ra32.
Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, Hayes DN, and Major MB (2013) Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 73:2199–2210.
Hayes JD and Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39: 199–218.
Heckman-Stoddard BM, DeCensi A, Sahasrabuddhe VV, and Ford LG (2017) Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 60:1639–1647.
Hidalgo CA, Blumm N, Barabási AL, and Christakis NA (2009) A dynamic network approach for the study of human phenotypes. PLOS Comput Biol 5:e1000353.
Hong DS, Kurzrock R, Supko JG, He X, Naing A, Wheler J, Lawrence D, Eder JP, Meyer CJ, Ferguson DA, et al. (2012) A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin Cancer Res 18:3396–3406.
Hopkins PN, Wu LL, Hunt SC, James BC, Vincent GM, and Williams RR (1996) Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler Thromb Vasc Biol 16:250–255.
Houessinon A, François C, Sauzay C, Louandre C, Mongelard G, Godin C, Bodeau S, Takahashi S, Saidak Z, Gutierrez L, et al. (2016) Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer 15:38.
Houghton CA, Fassett RG, and Coombes JS (2016) Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev 2016:7857186.
Hu L, Magesh S, Chen L, Wang L, Lewis TA, Chen Y, Khodier C, Inoyama D, Beamer LJ, Emge TJ, et al. (2013) Discovery of a small-molecule inhibitor and cellular probe of Keap1-Nrf2 protein-protein interaction. Bioorg Med Chem Lett 23: 3039–3043.
Hua CC, Chang LC, Tseng JC, Chu CM, Liu YC, and Shieh WB (2010) Functional haplotypes in the promoter region of transcription factor Nrf2 in chronic obstructive pulmonary disease. Dis Markers 28:185–193.
Hur W and Gray NS (2011) Small molecule modulators of antioxidant response pathway. Curr Opin Chem Biol 15:162–173.
Hwang AR, Han JH, Lim JH, Kang YJ, and Woo CH (2017) Fluvastatin inhibits AGE-induced cell proliferation and migration via an ERK5-dependent Nrf2 pathway in vascular smooth muscle cells. PLoS One 12:e0178278.
Innamorato NG, Rojo AI, García-Yagüe AJ, Yamamoto M, de Ceballos ML, and Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689.
Inoyama D, Chen Y, Huang X, Beamer LJ, Kong AN, and Hu L (2012) Optimization of fluorescently labeled Nrf2 peptide probes and the development of a fluorescence polarization assay for the discovery of inhibitors of Keap1-Nrf2 interaction. J Biomol Screen 17:435–447.
Iorio F, Isacchi A, di Bernardo D, and Brunetti-Pierri N (2010) Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy 6:1204–1205.
Ishii T and Mann GE (2014) Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance. Redox Biol 2:786–794.
Jang HJ, Hong EM, Kim M, Kim JH, Jang J, Park SW, Byun HW, Koh DH, Choi MH, Kae SH, et al. (2016) Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer. Oncotarget 7:46219–46229.
Jansen T, Hortmann M, Oelze M, Opitz B, Steven S, Schell R, Knorr M, Karbach S, Schuhmacher S, Wenzel P, et al. (2010) Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase1-evidence for direct and indirect antioxidant actions of bilirubin. J Mol Cell Cardiol 49:186–195.
Jay D, Hitomi H, and Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192.
Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernández-Ruiz J, and Cuadrado A (2011) Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal 14:2347–2360.
Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, and Zhang DD (2010) The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes 59:850–860.
Jiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, Zhang N, and Zhang DD (2014a) Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-kB-mediated inflammatory response. Kidney Int 85:333–343.
Jiang ZY, Lu MC, Xu LL, Yang TT, Xi MY, Xu XL, Guo XK, Zhang XJ, You QD, and Sun HP (2014b) Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis [published correction appears in J Med Chem (2014) 57:4406]. J Med Chem 57: 2736–2745.
Jiang ZY, Lu MC, and You QD (2016) Discovery and development of Kelch-like ECHassociated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1:NRF2) protein-protein interaction inhibitors: achievements, challenges, and future directions. J Med Chem 59:10837–10858.
Jiménez-Osorio AS, González-Reyes S, García-Niño WR, Moreno-Macías H, Rodríguez-Arellano ME, Vargas-Alarcón G, Zúñiga J, Barquera R, Pedraza-Chaverri J, Meza-Espinoza JP, et al. (2017) Corrigendum to “association of nuclear factorerythroid 2-related factor 2, thioredoxin interacting protein, and heme oxygenase-1 gene polymorphisms with diabetes and obesity in Mexican patients.” Oxid Med Cell Longev 2017:7543194.
Jiménez-Osorio AS, Picazo A, González-Reyes S, Barrera-Oviedo D, Rodríguez-Arellano ME, and Pedraza-Chaverri J (2014) Nrf2 and redox status in prediabetic and diabetic patients. Int J Mol Sci 15:20290–20305.
Jnoff E, Albrecht C, Barker JJ, Barker O, Beaumont E, Bromidge S, Brookfield F, Brooks M, Bubert C, Ceska T, et al. (2014) Binding mode and structure-activity relationships around direct inhibitors of the Nrf2-Keap1 complex. ChemMedChem 9:699–705.
Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, and Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496.
Johnson DA, Amirahmadi S, Ward C, Fabry Z, and Johnson JA (2010) The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol Sci 114:237–246.
Johnson DA and Johnson JA (2015) Nrf2–a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 88 (Pt B):253–267.
Johnson NM, Egner PA, Baxter VK, Sporn MB, Wible RS, Sutter TR, Groopman JD, Kensler TW, and Roebuck BD (2014) Complete protection against aflatoxin B(1)- induced liver cancer with a triterpenoid: DNA adduct dosimetry, molecular signature, and genotoxicity threshold. Cancer Prev Res (Phila) 7:658–665.
Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, Ardita CS, Reedy AR, Keebaugh ES, and Neish AS (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Reports 12:1217–1225.
Jung KA, Lee S, and Kwak MK (2017) NFE2L2/NRF2 activity is linked to mitochondria and AMP-activated protein kinase signaling in cancers through miR181c/mitochondria-encoded cytochrome c oxidase regulation. Antioxid Redox Signal 27:945–961.
Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM, Liby KT, Williams CR, Yamamoto M, Kensler TW, Ratan RR, et al. (2013) Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuates dopaminergic neurotoxicity in the MPTP mouse model of Parkinson’s disease. Antioxid Redox Signal 18:139–157.
Kaisar MA, Villalba H, Prasad S, Liles T, Sifat AE, Sajja RK, Abbruscato TJ, and Cucullo L (2017) Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: is Metformin a viable countermeasure? Redox Biol 13:353–362.
Kastrati I, Siklos MI, Calderon-Gierszal EL, El-Shennawy L, Georgieva G, Thayer EN, Thatcher GR, and Frasor J (2016) Dimethyl fumarate inhibits the nuclear factor kB pathway in breast cancer cells by covalent modification of p65 protein. J Biol Chem 291:3639–3647.
Kelleni MT, Amin EF, and Abdelrahman AM (2015) Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in rats: impact of oxidative stress, inflammation, and apoptosis. J Toxicol 2015:424813. Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, Chen TY, Fahey JW, and Talalay P (2013) Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 329:163–177.
Khan I, Tantray MA, Alam MS, and Hamid H (2017) Natural and synthetic bioactive inhibitors of glycogen synthase kinase. Eur J Med Chem 125:464–477. Kim JE, You DJ, Lee C, Ahn C, Seong JY, and Hwang JI (2010a) Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation. Cell Signal 22:1645–1654.
Kim T, Kim YJ, Han IH, Lee D, Ham J, Kang KS, and Lee JW (2015) The synthesis of sulforaphane analogues and their protection effect against cisplatin induced cytotoxicity in kidney cells. Bioorg Med Chem Lett 25:62–66.
Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS, Yoo NJ, and Lee SH (2010b) Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220:446–451.
Kitagishi Y and Matsuda S (2013) Redox regulation of tumor suppressor PTEN in cancer and aging (Review). Int J Mol Med 31:511–515.
Kitsak M, Sharma A, Menche J, Guney E, Ghiassian SD, Loscalzo J, and Barabási AL (2016) Tissue specificity of human disease module. Sci Rep 6:35241. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, et al. (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624.
Kocer D, Bayram F, and Diri H (2014) The effects of metformin on endothelial dysfunction, lipid metabolism and oxidative stress in women with polycystic ovary syndrome. Gynecol Endocrinol 30:367–371.
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223.
Kong X, Thimmulappa R, Craciun F, Harvey C, Singh A, Kombairaju P, Reddy SP, Remick D, and Biswal S (2011) Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am J Respir Crit Care Med 184: 928–938.
Kruger AL, Peterson SJ, Schwartzman ML, Fusco H, McClung JA, Weiss M, Shenouda S, Goodman AI, Goligorsky MS, Kappas A, et al. (2006) Up-regulation of heme oxygenase provides vascular protection in an animal model of diabetes through its antioxidant and antiapoptotic effects. J Pharmacol Exp Ther 319: 1144–1152.
Kruse ML, Friedrich M, Arlt A, Röcken C, Egberts JH, Sebens S, and Schäfer H (2016) Colonic lamina propria inflammatory cells from patients with IBD induce the nuclear factor-E2 related factor-2 thereby leading to greater proteasome activity and apoptosis protection in human colonocytes. Inflamm Bowel Dis 22: 2593–2606.
Kuang X, Scofield VL, Yan M, Stoica G, Liu N, and Wong PK (2009) Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirusinduced neurodegeneration in mice. Brain Res 1286:174–184.
Kurinna S and Werner S (2015) NRF2 and microRNAs: new but awaited relations. Biochem Soc Trans 43:595–601.
Kwak JY, Takeshige K, Cheung BS, and Minakami S (1991) Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta 1076:369–373.
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al. (2006) The connectivity map: using geneexpression signatures to connect small molecules, genes, and disease. Science 313: 1929–1935.
Lastres-Becker I, García-Yagüe AJ, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, and Cuadrado A (2016) Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal 25: 61–77.
Lastres-Becker I, Innamorato NG, Jaworski T, Rábano A, Kügler S, Van Leuven F, and Cuadrado A (2014) Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain 137:78–91.
Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rábano A, Kirik D, and Cuadrado A (2012) a-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21:3173–3192.
Lee D, Xu IM, Chiu DK, Lai RK, Tse AP, Lan Li L, Law CT, Tsang FH, Wei LL, Chan CY, et al. (2017) Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. J Clin Invest 127:1856–1872.
Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT, Huo L, Hsu MC, et al. (2009) KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 36:131–140.
Lee SR, Yang KS, Kwon J, Lee C, Jeong W, and Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342.
Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, Ge XL, Zhang J, Song XJ, Wang Y, et al. (2013) Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 250:239–249.
Li J, Stein TD, and Johnson JA (2004) Genetic dissection of systemic autoimmune disease in Nrf2-deficient mice. Physiol Genomics 18:261–272.
Licht-Mayer S, Wimmer I, Traffehn S, Metz I, Brück W, Bauer J, Bradl M, and Lassmann H (2015) Cell type-specific Nrf2 expression in multiple sclerosis lesions. Acta Neuropathol 130:263–277.
Limonciel A and Jennings P (2014) A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel) 6:371–379.
Lin CH, Lin HI, Chen ML, Lai TT, Cao LP, Farrer MJ, Wu RM, and Chien CT (2016) Lovastatin protects neurite degeneration in LRRK2-G2019S parkinsonism through activating the Akt/Nrf pathway and inhibiting GSK3b activity. Hum Mol Genet 25: 1965–1978.
Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, Weinberg G, Kalinin S, and Feinstein DL (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 3:75–84.
Lin W, Wu RT, Wu T, Khor TO, Wang H, and Kong AN (2008) Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway. Biochem Pharmacol 76:967–973.
Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S, et al. (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134: 678–692.
Liu GH, Qu J, and Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783:713–727.
Liu TS, Pei YH, Peng YP, Chen J, Jiang SS, and Gong JB (2014) Oscillating high glucose enhances oxidative stress and apoptosis in human coronary artery endothelial cells. J Endocrinol Invest 37:645–651.
Lo SC, Li X, Henzl MT, Beamer LJ, and Hannink M (2006) Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 25: 3605–3617.
LoGerfo A, Chico L, Borgia L, Petrozzi L, Rocchi A, D’Amelio A, Carlesi C, Caldarazzo Ienco E, Mancuso M, and Siciliano G (2014) Lack of association between nuclear factor erythroid-derived 2-like 2 promoter gene polymorphisms and oxidative stress biomarkers in amyotrophic lateral sclerosis patients. Oxid Med Cell Longev 2014:432626.
Lu K, Alcivar AL, Ma J, Foo TK, Zywea S, Mahdi A, Huo Y, Kensler TW, Gatza ML, and Xia B (2017) NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction. Cancer Res 77: 2881–2892.
Lu MC, Jiao Q, Liu T, Tan SJ, Zhou HS, You QD, and Jiang ZY (2018) Discovery of a head-to-tail cyclic peptide as the Keap1-Nrf2 protein-protein interaction inhibitor with high cell potency. Eur J Med Chem 143:1578–1589.
Lv H, Liu Q, Wen Z, Feng H, Deng X, and Ci X (2017) Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3bNrf2 signal axis. Redox Biol 12:311–324.
Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426.
Ma Q, Battelli L, and Hubbs AF (2006) Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am J Pathol 168:1960–1974.
Maicas N, Ferrándiz ML, Brines R, Ibáñez L, Cuadrado A, Koenders MI, van den Berg WB, and Alcaraz MJ (2011) Deficiency of Nrf2 accelerates the effector phase of arthritis and aggravates joint disease. Antioxid Redox Signal 15:889–901.
Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, and Chatterjee M (2015) The variable chemotherapeutic response of malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. Phytomedicine 22: 713–723.
Maqbool M and Hoda N (2017) GSK3 inhibitors in the therapeutic development of diabetes, cancer and neurodegeneration: past, present and future. Curr Pharm Des 23:4332–4350.
Marcotte D, Zeng W, Hus JC, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H, et al. (2013) Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem 21:4011–4019.
Markart P, Luboeinski T, Korfei M, Schmidt R, Wygrecka M, Mahavadi P, Mayer K, Wilhelm J, Seeger W, Guenther A, et al. (2009) Alveolar oxidative stress is associated with elevated levels of nonenzymatic low-molecular-weight antioxidants in patients with different forms of chronic fibrosing interstitial lung diseases. Antioxid Redox Signal 11:227–240.
Markowicz-Piasecka M, Sikora J, Szyd?owska A, Skupien A, Mikiciuk-Olasik E,  and Huttunen KM (2017) Metformin - a future therapy for neurodegenerative diseases: theme: drug discovery, development and delivery in Alzheimer’s disease: guest editor: Davide Brambilla. Pharm Res 34:2614–2627.
Marrone G, Maeso-Díaz R, García-Cardena G, Abraldes JG, García-Pagán JC, Bosch J, and Gracia-Sancho J (2015) KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 64: 1434–1443.
Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL, et al. (2013) Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology 38:2010–2022.
 Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, Aplenc R, Yamamoto T, Yamamoto M, Cho HY, et al. (2007) Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 21:2237–2246.
McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F, et al. (2014) GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 5:2881–2911.
McGuire VA, Ruiz-Zorrilla Diez T, Emmerich CH, Strickson S, Ritorto MS, Sutavani RV, Weib A, Houslay KF, Knebel A, Meakin PJ, et al. (2016) Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation. Sci Rep 6:31159.
Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, Dinkova-Kostova AT, Dillon JF, Hayes JD, and Ashford ML (2014) Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol 34:3305–3320.
Meissner M, Doll M, Hrgovic I, Reichenbach G, König V, Hailemariam-Jahn T, Gille J, and Kaufmann R (2011) Suppression of VEGFR2 expression in human endothelial cells by dimethylfumarate treatment: evidence for anti-angiogenic action. J Invest Dermatol 131:1356–1364.
Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, and Barabási AL (2015) Disease networks: uncovering disease-disease relationships through the incomplete interactome. Science 347:1257601.
Milkovic L, Zarkovic N, and Saso L (2017) Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol 12:727–732.
Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, and Motohashi H (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79.
Moon SJ, Park JS, Woo YJ, Lim MA, Kim SM, Lee SY, Kim EK, Lee HJ, Lee WS, Park SH, et al. (2014) Rebamipide suppresses collagen-induced arthritis through reciprocal regulation of th17/treg cell differentiation and heme oxygenase 1 induction. Arthritis Rheumatol 66:874–885.
Morgan MJ and Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kB signaling. Cell Res 21:103–115.
Morgan PE, Sturgess AD, Hennessy A, and Davies MJ (2007) Serum protein oxidation and apolipoprotein CIII levels in people with systemic lupus erythematosus with and without nephritis. Free Radic Res 41:1301–1312.
Mrowietz U, Christophers E, and Altmeyer P (1998) Treatment of psoriasis with fumaric acid esters: results of a prospective multicentre study: German Multicentre study. Br J Dermatol 138:456–460.
Mrowietz U, Szepietowski JC, Loewe R, van de Kerkhof P, Lamarca R, Ocker WG, Tebbs VM, and Pau-Charles I (2017) Efficacy and safety of LAS41008 (dimethyl fumarate) in adults with moderate-to-severe chronic plaque psoriasis: a randomized, double-blind, Fumaderm®- and placebo-controlled trial (BRIDGE). Br J Dermatol 176:615–623.
Na LX, Li Y, Pan HZ, Zhou XL, Sun DJ, Meng M, Li XX, and Sun CH (2013) Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol Nutr Food Res 57: 1569–1577.
Napetschnig J and Wu H (2013) Molecular basis of NF-kB signaling. Annu Rev Biophys 42:443–468.
Nasiri HR, Linge S, and Ullmann D (2016) Thermodynamic profiling of inhibitors of Nrf2:Keap1 interactions. Bioorg Med Chem Lett 26:526–529.
Natarajan VT, Singh A, Kumar AA, Sharma P, Kar HK, Marrot L, Meunier JR, Natarajan K, Rani R, and Gokhale RS (2010) Transcriptional upregulation of Nrf2- dependent phase II detoxification genes in the involved epidermis of vitiligo vulgaris. J Invest Dermatol 130:2781–2789.
Nef HM, Möllmann H, Troidl C, Kostin S, Böttger T, Voss S, Hilpert P, Krause N, Weber M, Rolf A, et al. (2008) Expression profiling of cardiac genes in Tako-Tsubo cardiomyopathy: insight into a new cardiac entity. J Mol Cell Cardiol 44:395–404.
Nesti L and Natali A (2017) Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27: 657–669.
Ockenfels HM, Schultewolter T, Ockenfels G, Funk R, and Goos M (1998) The antipsoriatic agent dimethylfumarate immunomodulates T-cell cytokine secretion and inhibits cytokines of the psoriatic cytokine network. Br J Dermatol 139: 390–395.
Okano Y, Nezu U, Enokida Y, Lee MT, Kinoshita H, Lezhava A, Hayashizaki Y, Morita S, Taguri M, Ichikawa Y, et al. (2013) SNP (-617C.A) in ARE-like loci of the NRF2 gene: a new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women. PLoS One 8:e73794.
Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW, Lai ZQ, Lin ZX, Dunn K, Sanderson CM, et al. (2015) Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity: implications for therapeutic targeting of Nrf2. Free Radic Biol Med 78:202–212.
Onderdijk AJ, Balak DM, Baerveldt EM, Florencia EF, Kant M, Laman JD, van IJcken WF, Racz E, de Ridder D, Thio HB, et al. (2014) Regulated genes in psoriatic skin during treatment with fumaric acid esters. Br J Dermatol 171:732–741.
Onyiah JC, Sheikh SZ, Maharshak N, Otterbein LE, and Plevy SE (2014) Heme oxygenase-1 and carbon monoxide regulate intestinal homeostasis and mucosal immune responses to the enteric microbiota. Gut Microbes 5:220–224.
Orena S, Owen J, Jin F, Fabian M, Gillitt ND, and Zeisel SH (2015) Extracts of fruits and vegetables activate the antioxidant response element in IMR-32 cells. J Nutr 145:2006–2011.
Owen MR, Doran E, and Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614.
Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang MI, Kobayashi A, Yokoyama S, and Yamamoto M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21: 689–700.
Pajares M, Cuadrado A, and Rojo AI (2017) Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol 11: 543–553.
Pajares M, Jiménez-Moreno N, Dias IH, Debelec B, Vucetic M, Fladmark KE, Basaga H, Ribaric S, Milisav I, and Cuadrado A (2015) Redox control of protein degradation. Redox Biol 6:409–420.
Pajares M, Jiménez-Moreno N, García-Yagüe AJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M, Rojo AI, and Cuadrado A (2016) Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12: 1902–1916.
Palomo V and Martinez A (2017) Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Expert Opin Ther Pat 27:657–666.
Panieri E and Santoro MM (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis 7:e2253.
Pantan R, Tocharus J, Suksamrarn A, and Tocharus C (2016) Synergistic effect of atorvastatin and cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells. Exp Cell Res 342:104–112.
Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL, Bai L, Cohen ML, Meyer C, Liby KT, Miller RH, et al. (2011) Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci Rep 1:201.
Park SY, Lee SW, Shin HK, Chung WT, Lee WS, Rhim BY, Hong KW, and Kim CD (2010) Cilostazol enhances apoptosis of synovial cells from rheumatoid arthritis patients with inhibition of cytokine formation via Nrf2-linked heme oxygenase 1 induction. Arthritis Rheum 62:732–741.
Pedruzzi LM, Cardozo LF, Daleprane JB, Stockler-Pinto MB, Monteiro EB, Leite M Jr, Vaziri ND, and Mafra D (2015) Systemic inflammation and oxidative stress in hemodialysis patients are associated with down-regulation of Nrf2. J Nephrol 28: 495–501.
Peng H, Guerau-de-Arellano M, Mehta VB, Yang Y, Huss DJ, Papenfuss TL, LovettRacke AE, and Racke MK (2012) Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor kB (NF-kB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem 287:28017–28026.
Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, et al.; BEAM Study Investigators (2011) Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 365:327–336.
Pilar Valdecantos M, Prieto-Hontoria PL, Pardo V, Módol T, Santamaría B, Weber M, Herrero L, Serra D, Muntané J, Cuadrado A, et al. (2015) Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med 84:263–278.
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, and Furlong LI (2017) DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45:D833–D839.
Pitha-Rowe I, Liby K, Royce D, and Sporn M (2009) Synthetic triterpenoids attenuate cytotoxic retinal injury: cross-talk between Nrf2 and PI3K/AKT signaling through inhibition of the lipid phosphatase PTEN. Invest Ophthalmol Vis Sci 50: 5339–5347.
Qiu P, Man S, Li J, Liu J, Zhang L, Yu P, and Gao W (2016) Overdose intake of curcumin initiates the unbalanced state of bodies. J Agric Food Chem 64: 2765–2771.
Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, and Freeman ML (2008) Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem Res Toxicol 21:705–710.
Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, and Cuadrado A (2011) SCF/ beta-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133.
Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, TobónVelasco JC, Devijver H, García-Mayoral MF, Van Leuven F, et al. (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/b-TrCP axis. Mol Cell Biol 32:3486–3499.
Ramadori P, Drescher H, Erschfeld S, Schumacher F, Berger C, Fragoulis A, Schenkel J, Kensler TW, Wruck CJ, Trautwein C, et al. (2016) Hepatocyte-specific Keap1 deletion reduces liver steatosis but not inflammation during non-alcoholic steatohepatitis development. Free Radic Biol Med 91:114–126.
Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, and Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85.
Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, and Biswal S (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114:1248–1259.
Ranjan N, Fulcrand G, King A, Brown J, Jiang X, Leng F, and Arya DP (2014) Selective inhibition of bacterial topoisomerase I by alkynyl-bisbenzimidazoles. MedChemComm 5:816–825.
Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, and Spalding D (2017) Nonalcoholic fatty liver disease: a sign of systemic disease. Metabolism 72:94–108.
Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, and Zhang DD (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA 108:1433–1438.
Rena G, Hardie DG, and Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585.
Reuter S, Gupta SC, Chaturvedi MM, and Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616.
Richardson BG, Jain AD, Speltz TE, and Moore TW (2015) Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway. Bioorg Med Chem Lett 25:2261–2268.
Roberts CA, Dickinson AK, and Taams LS (2015) The interplay between monocytes/ macrophages and CD4(+) T cell subsets in rheumatoid arthritis. Front Immunol 6: 571.
Rojo AI, Innamorato NG, Martín-Moreno AM, De Ceballos ML, Yamamoto M, and Cuadrado A (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58:588–598.
Rojo AI, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, and Cuadrado A (2014a) Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 21:1766–1801.
Rojo AI, Rada P, Mendiola M, Ortega-Molina A, Wojdyla K, Rogowska-Wrzesinska A, Hardisson D, Serrano M, and Cuadrado A (2014b) The PTEN/NRF2 axis promotes human carcinogenesis. Antioxid Redox Signal 21:2498–2514.
Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, and MacEwan DJ (2012) The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kB and underlies its chemo-resistance. Blood 120:5188–5198.
Ryoo IG, Lee SH, and Kwak MK (2016) Redox modulating NRF2: a potential mediator of cancer stem cell resistance. Oxid Med Cell Longev 2016:2428153.
Saddawi-Konefka R, Seelige R, Gross ET, Levy E, Searles SC, Washington A Jr, Santosa EK, Liu B, O’Sullivan TE, Harismendy O, et al. (2016) Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Reports 16:2348–2358.
Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, Iso T, Yamamoto H, Morita M, Baird L, et al. (2015) Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol 36:271–284.
Saracino AM and Orteu CH (2017) Severe recalcitrant cutaneous manifestations in systemic lupus erythematosus successfully treated with fumaric acid esters. Br J Dermatol 176:472–480.
Sato M, Aoki T, Inoue H, Tanaka T, and Kunishima N (2013) Keap1 Protein Binding Compound, Cristal of Complex Between the Same and Keap1 Protein, and Method for Producing the Same, Toray Industries, Tokyo. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, Saito N, Fujita Y, Kurita Y, Kobayashi K, et al. (2016) Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res 17:107.
Satoh T, McKercher SR, and Lipton SA (2013) Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 65:645–657.
Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, et al. (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341:274–284.
Schilling S, Goelz S, Linker R, Luehder F, and Gold R (2006) Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol 145:101–107.
Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, Hoffmann V, Pohlau D, and Przuntek H (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol 13:604–610.
Schipper HM, Song W, Zukor H, Hascalovici JR, and Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110:469–485.
Schuiveling M, Vazirpanah N, Radstake TRDJ, Zimmermann M, and Broen JCA (2017) Metformin, a new era for an old drug in the treatment of immune mediated disease? Curr Drug Targets [published ahead of print]. Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, Spencer CM, Shetty A, Sagan SA, Cree BA, Sobel RA, Wipke BT, Steinman L, et al. (2016) Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci USA 113:4777–4782.
Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176.
Sha LK, Sha W, Kuchler L, Daiber A, Giegerich AK, Weigert A, Knape T, Snodgrass R, Schröder K, Brandes RP, et al. (2015) Loss of Nrf2 in bone marrow-derived macrophages impairs antigen-driven CD8(+) T cell function by limiting GSH and Cys availability. Free Radic Biol Med 83:77–88.
Shanmugam G, Narasimhan M, Conley RL, Sairam T, Kumar A, Mason RP, Sankaran R, Hoidal JR, and Rajasekaran NS (2017a) Chronic endurance exercise impairs cardiac structure and function in middle-aged mice with impaired Nrf2 signaling. Front Physiol 8:268.
Shanmugam G, Narasimhan M, Tamowski S, Darley-Usmar V, and Rajasekaran NS (2017b) Constitutive activation of Nrf2 induces a stable reductive state in the mouse myocardium. Redox Biol 12:937–945.
Sharma A, Rizky L, Stefanovic N, Tate M, Ritchie RH, Ward KW, and de Haan JB (2017) The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activator dh404 protects against diabetes-induced endothelial dysfunction. Cardiovasc Diabetol 16:33.
Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, Yoshimatsu Y, Tachimori Y, Kushima R, Kiyono T, et al. (2011) NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia 13:864–873.
Shimizu T, Inoue K, Hachiya H, Shibuya N, Aoki T, and Kubota K (2016) Accumulation of phosphorylated p62 is associated with NF-E2-related factor 2 activation in hepatocellular carcinoma. J Hepatobiliary Pancreat Sci 23:467–471.
Shimoyama Y, Mitsuda Y, Tsuruta Y, Hamajima N, and Niwa T (2014) Polymorphism of Nrf2, an antioxidative gene, is associated with blood pressure and cardiovascular mortality in hemodialysis patients. Int J Med Sci 11:726–731.
Shimozono R, Asaoka Y, Yoshizawa Y, Aoki T, Noda H, Yamada M, Kaino M, and Mochizuki H (2013) Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol 84:62–70.
Signorelli SS, Li Volsi G, Fiore V, Mangiafico M, Barbagallo I, Parenti R, Rizzo M, and Li Volti G (2016) Plasma heme oxygenase-1 is decreased in peripheral artery disease patients. Mol Med Rep 14:3459–3463.
Silva T, Reis J, Teixeira J, and Borges F (2014) Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 15:116–145.
Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, et al. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:e420.
Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, et al. (2016) Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol 11:3214–3225.
Siomek A (2012) NF-kB signaling pathway and free radical impact. Acta Biochim Pol 59:323–331.
Song P, Li K, Liu L, Wang X, Jian Z, Zhang W, Wang G, Li C, and Gao T (2016) Genetic polymorphism of the Nrf2 promoter region is associated with vitiligo risk in Han Chinese populations. J Cell Mol Med 20:1840–1850.
Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54: 1.30.1–1.30.33.
Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, and Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046.
Strom J and Chen QM (2017) Loss of Nrf2 promotes rapid progression to heart failure following myocardial infarction. Toxicol Appl Pharmacol 327:52–58.
Sun H, Zhu J, Lin H, Gu K, and Feng F (2017) Recent progress in the development of small molecule Nrf2 modulators: a patent review (2012-2016). Expert Opin Ther Pat 27:763–785.
Taguchi K and Yamamoto M (2017) The KEAP1-NRF2 system in cancer. Front Oncol 7:85.
Tahvili S, Zandieh B, and Amirghofran Z (2015) The effect of dimethyl fumarate on gene expression and the level of cytokines related to different T helper cell subsets in peripheral blood mononuclear cells of patients with psoriasis. Int J Dermatol 54: e254–e260.
Takahashi Y, Kobayashi Y, Kawata K, Kawamura K, Sumiyoshi S, Noritake H, Watanabe S, Chida T, Souda K, Sakaguchi T, et al. (2014) Does hepatic oxidative stress enhance activation of nuclear factor-E2-related factor in patients with nonalcoholic steatohepatitis? Antioxid Redox Signal 20:538–543.
Tan SM, Sharma A, Stefanovic N, Yuen DY, Karagiannis TC, Meyer C, Ward KW, Cooper ME, and de Haan JB (2014) Derivative of bardoxolone methyl, dh404, in an inverse dose-dependent manner lessens diabetes-associated atherosclerosis and improves diabetic kidney disease. Diabetes 63:3091–3103.
Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT, and Marks JR (2014) A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res 16:415.
Tarumoto T, Nagai T, Ohmine K, Miyoshi T, Nakamura M, Kondo T, Mitsugi K, Nakano S, Muroi K, Komatsu N, et al. (2004) Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinibresistant cell line. Exp Hematol 32:375–381.
Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, and Biswal S (2006a) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116:984–995.
Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT, Sporn MB, Yamamoto M, Kensler TW, and Biswal S (2006b) Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun 351:883–889.
Thomson L, Tenopoulou M, Lightfoot R, Tsika E, Parastatidis I, Martinez M, Greco TM, Doulias PT, Wu Y, Tang WH, et al. (2012) Immunoglobulins against tyrosinenitrated epitopes in coronary artery disease. Circulation 126:2392–2401.
Todorovic M, Newman JR, Shan J, Bentley S, Wood SA, Silburn PA, and Mellick GD (2015) Comprehensive assessment of genetic sequence variants in the antioxidant ‘master regulator’ NRF2 in idiopathic Parkinson’s disease. PLoS One 10:e0128030.
Tong KI, Padmanabhan B, Kobayashi A, Shang C, Hirotsu Y, Yokoyama S, and Yamamoto M (2007) Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol 27:7511–7521.
Tsai HH, Lai HY, Chen YC, Li CF, Huang HS, Liu HS, Tsai YS, and Wang JM (2017) Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPDinduced autophagy pathway. Oncotarget 8:13832–13845.
Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, Otsuki A, Kikuchi H, Oshima Y, Suzuki M, et al. (2017) Halofuginone enhances the chemosensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med 103:236–247.
Tu J, Zhang X, Zhu Y, Dai Y, Li N, Yang F, Zhang Q, Brann DW, and Wang R (2015) Cell-permeable peptide targeting the Nrf2-Keap1 interaction: a potential novel therapy for global cerebral ischemia. J Neurosci 35:14727–14739.
Tung MC, Lin PL, Wang YC, He TY, Lee MC, Yeh SD, Chen CY, and Lee H (2015) Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget 6:41692–41705.
Türei D, Papp D, Fazekas D, Földvári-Nagy L, Módos D, Lenti K, Csermely P, and Korcsmáros T (2013) NRF2-ome: an integrated web resource to discover protein interaction and regulatory networks of NRF2. Oxid Med Cell Longev 2013: 737591.
Tzima S, Victoratos P, Kranidioti K, Alexiou M, and Kollias G (2009) Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFNbeta production. J Exp Med 206:1167–1179.
Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, and Csiszar A (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299: H18–H24.
Ungvari Z, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, Ballabh P, Recchia FA, Wilkerson DC, Sonntag WE, et al. (2011) Adaptive induction of NF-E2- related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol 300:H1133–H1140.
Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, Sugawara A, Kensler TW, and Yamamoto M (2013) The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol 33:2996–3010.
Uruno A, Yagishita Y, and Yamamoto M (2015) The Keap1-Nrf2 system and diabetes mellitus. Arch Biochem Biophys 566:76–84.
van Horssen J, Drexhage JA, Flor T, Gerritsen W, van der Valk P, and de Vries HE (2010) Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radic Biol Med 49:1283–1289.
van Muiswinkel FL, de Vos RA, Bol JG, Andringa G, Jansen Steur EN, Ross D, Siegel D, and Drukarch B (2004) Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging 25:1253–1262.
Vidal M, Cusick ME, and Barabási AL (2011) Interactome networks and human disease. Cell 144:986–998.
von Otter M, Bergström P, Quattrone A, De Marco EV, Annesi G, Söderkvist P, Wettinger SB, Drozdzik M, Bialecka M, Nissbrandt H, et al. (2014) Genetic associations of Nrf2-encoding NFE2L2 variants with Parkinson’s disease: a multicenter study. BMC Med Genet 15:131.
von Otter M, Landgren S, Nilsson S, Celojevic D, Bergström P, Håkansson A, Nissbrandt H, Drozdzik M, Bialecka M, Kurzawski M, et al. (2010a) Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease. BMC Med Genet 11: 36.
von Otter M, Landgren S, Nilsson S, Zetterberg M, Celojevic D, Bergström P, Minthon L, Bogdanovic N, Andreasen N, Gustafson DR, et al. (2010b) Nrf2-encoding NFE2L2 haplotypes influence disease progression but not risk in Alzheimer’s disease and age-related cataract. Mech Ageing Dev 131:105–110.
Wang L, Han J, Shan P, You S, Chen X, Jin Y, Wang J, Huang W, Wang Y, and Liang G (2017a) MD2 blockage protects obesity-induced vascular remodeling via activating AMPK/Nrf2. Obesity (Silver Spring) 25:1532–1539.
Wang R, An J, Ji F, Jiao H, Sun H, and Zhou D (2008) Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun 373:151–154.
Wang X, Chen H, Liu J, Ouyang Y, Wang D, Bao W, and Liu L (2015) Association between the NF-E2 related factor 2 gene polymorphism and oxidative stress, antioxidative status, and newly-diagnosed type 2 diabetes mellitus in a Chinese population. Int J Mol Sci 16:16483–16496.
Wang X, de Rivero Vaccari JP, Wang H, Diaz P, German R, Marcillo AE, and Keane RW (2012) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29: 936–945.
Wang X, Hausding M, Weng SY, Kim YO, Steven S, Klein T, Daiber A, and Schuppan D (2018) Gliptins suppress inflammatory macrophage activation to mitigate inflammation, fibrosis, oxidative stress, and vascular dysfunction in models of nonalcoholic steatohepatitis and liver fibrosis. Antioxid Redox Signal. 28:87–109.
Wang X, Li M, Cao Y, Wang J, Zhang H, Zhou X, Li Q, and Wang L (2017b) Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. Eur J Pharmacol 809:196–202.
Wang XJ, Hayes JD, Henderson CJ, and Wolf CR (2007) Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci USA 104:19589–19594.
Wang Y, Huang Y, Xu Y, Ruan W, Wang H, Zhang Y, Saavedra JM, Zhang L, Huang Z, and Pang T (2017c) A dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid Redox Signal 28: 141–163.
Wasik U, Milkiewicz M, Kempinska-Podhorodecka A, and Milkiewicz P (2017) Protection against oxidative stress mediated by the Nrf2/Keap1 axis is impaired in primary biliary cholangitis. Sci Rep 7:44769.
Wen X, Thorne G, Hu L, Joy MS, and Aleksunes LM (2015) Activation of NRF2 signaling in HEK293 cells by a first-in-class direct KEAP1-NRF2 inhibitor. J Biochem Mol Toxicol 29:261–266.
Wenzel P, Kossmann S, Münzel T, and Daiber A (2017) Redox regulation of cardiovascular inflammation: immunomodulatory function of mitochondrial and Noxderived reactive oxygen and nitrogen species. Free Radic Biol Med 109:48–60.
Wenzel P, Oelze M, Coldewey M, Hortmann M, Seeling A, Hink U, Mollnau H, Stalleicken D, Weiner H, Lehmann J, et al. (2007) Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates. Arterioscler Thromb Vasc Biol 27:1729–1735.
Wenzel P, Rossmann H, Müller C, Kossmann S, Oelze M, Schulz A, Arnold N, Simsek C, Lagrange J, Klemz R, et al. (2015) Heme oxygenase-1 suppresses a proinflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur Heart J 36:3437–3446.
Winkel AF, Engel CK, Margerie D, Kannt A, Szillat H, Glombik H, Kallus C, Ruf S, Güssregen S, Riedel J, et al. (2015) Characterization of RA839, a noncovalent small molecule binder to Keap1 and selective activator of Nrf2 signaling. J Biol Chem 290:28446–28455.
Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, and Harper JW (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13:270–283.
Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, and Mao-Draayer Y (2017) Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/ Th17 and Th2 in multiple sclerosis patients. J Immunol 198:3069–3080.
Wu W, Zhao L, Yang P, Zhou W, Li B, Moorhead JF, Varghese Z, Ruan XZ, and Chen Y (2016a) Inflammatory stress sensitizes the liver to atorvastatin-induced injury in ApoE-/- mice. PLoS One 11:e0159512.
Wu WJ, Jia WW, Liu XH, Pan LL, Zhang QY, Yang D, Shen XY, Liu L, and Zhu YZ (2016b) S-propargyl-cysteine attenuates inflammatory response in rheumatoid arthritis by modulating the Nrf2-ARE signaling pathway. Redox Biol 10:157–167.
Xia N, Daiber A, Förstermann U, and Li H (2017) Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 174:1633–1646.
Xiaobo C, Majidi M, Feng M, Shao R, Wang J, Zhao Y, Baladandayuthapani V, Song J, Fang B, Ji L, et al. (2016) TUSC2(FUS1)-erlotinib induced vulnerabilities in epidermal growth factor receptor (EGFR) wildtype non-small cell lung cancer (NSCLC) targeted by the repurposed drug auranofin. Sci Rep 6:35741.
Xie H, Zhou F, Liu L, Zhu G, Li Q, Li C, and Gao T (2016) Vitiligo: how do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci 81:3–9.
Xiong M, Li B, Zhu Q, Wang YX, and Zhang HY (2014) Identification of transcription factors for drug-associated gene modules and biomedical implications. Bioinformatics 30:305–309.
Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, Law CT, Wong CM, Cai Z, Wong CC, et al. (2016a) Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci USA 113:E725–E734.
Xu J, Donepudi AC, Moscovitz JE, and Slitt AL (2013) Keap1-knockdown decreases fasting-induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue. PLoS One 8:e79841.
Xu X, Sun J, Chang X, Wang J, Luo M, Wintergerst KA, Miao L, and Cai L (2016b) Genetic variants of nuclear factor erythroid-derived 2-like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China. J Cell Mol Med 20:2078–2088.
Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, et al. (2014) NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia 57:204–213.
Xu Z, Zhang F, Sun F, Gu K, Dong S, and He D (2015) Dimethyl fumarate for multiple sclerosis. Cochrane Database Syst Rev 4:CD011076.
Xue P, Hou Y, Chen Y, Yang B, Fu J, Zheng H, Yarborough K, Woods CG, Liu D, Yamamoto M, et al. (2013) Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes 62:845–854.
Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, and Yamamoto M (2008) Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28:2758–2770.
Yamamoto T, Yoh K, Kobayashi A, Ishii Y, Kure S, Koyama A, Sakamoto T, Sekizawa K, Motohashi H, and Yamamoto M (2004) Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem Biophys Res Commun 321: 72–79.
Yang M, Yao Y, Eades G, Zhang Y, and Zhou Q (2011) MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 129: 983–991.
Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Suganuma H, et al. (2016) Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 6:30659.
Yap JL, Worlikar S, MacKerell AD Jr, Shapiro P, and Fletcher S (2011) Smallmolecule inhibitors of the ERK signaling pathway: towards novel anticancer therapeutics. ChemMedChem 6:38–48.
Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Yamagishi S, Morito N, Nakano T, Ojima M, Shimohata H, et al. (2008) Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2-deficient mice. Genes Cells 13:1159–1170.
Yore MM, Kettenbach AN, Sporn MB, Gerber SA, and Liby KT (2011) Proteomic analysis shows synthetic oleanane triterpenoid binds to mTOR. PLoS One 6: e22862.
Yoshizaki Y, Mori T, Ishigami-Yuasa M, Kikuchi E, Takahashi D, Zeniya M, Nomura N, Mori Y, Araki Y, Ando F, et al. (2017) Drug-repositioning screening for Keap1- Nrf2 binding inhibitors using fluorescence correlation spectroscopy. Sci Rep 7: 3945.
Yu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y, Xu W, Li W, et al. (2011) Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 23:883–892.
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, Srinivasan P, Gao J, Chakravarty D, Devlin SM, et al. (2017) Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 23: 703–713.
Zeidan TA, Duncan S, Hencken CP, Wynn TA, and Sanrame CN (2014) Prodrugs of Fumarates and Their Use in Treating Various Diseases, Alkermes Pharma Ireland, Dublin, Ireland. Zhang DD (2013) Bardoxolone brings Nrf2-based therapies to light. Antioxid Redox Signal 19:517–518.
Zhang QY, Chu XY, Jiang LH, Liu MY, Mei ZL, and Zhang HY (2017) Identification of non-electrophilic Nrf2 activators from approved drugs. Molecules 22:1–12.
Zhao C, Zhang Y, Liu H, Li P, Zhang H, and Cheng G (2017) Fortunellin protects against high fructose-induced diabetic heart injury in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation. Biochem Biophys Res Commun 490:552–559.
Zhao M, Chen H, Ding Q, Xu X, Yu B, and Huang Z (2016) Nuclear factor erythroid 2-related factor 2 deficiency exacerbates lupus nephritis in B6/lpr mice by regulating Th17 cell function. Sci Rep 6:38619.
Zhou X, Menche J, Barabási AL, and Sharma A (2014) Human symptoms-disease network. Nat Commun 5:4212.

本文由福山生物整理翻譯,轉(zhuǎn)載請(qǐng)注明出處。
地址:深圳市南山區(qū)粵海街道高新中三道9號(hào)環(huán)球數(shù)碼大廈19樓
電話:400-113-6988
E-mail:dongfangxicao@163.com